首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

2.
Several laboratories have reported that exposure of cells to UV radiation results in a significant imbalance in deoxynucleoside triphosphate pool concentrations. In our CHO-K1 cells, a rapid drop in dCTP is accompanied by a rapid increase in dTTP. Examination of enzyme activities associated with synthesis/degradation of these molecules suggests that UV transiently enhances a putative dCTPase, dCMP deaminase and CdR kinase activities. This results in accumulation of excess dUMP which is probably converted to dTMP, then to dTTP. The absence of dCMP deaminase in V79 cells prohibits this rapid response in those cells. Moreover, significantly different dCMP deaminase activities were observed in CHO-K1 cells obtained from other laboratories, suggesting they, too, may respond differently to irradiation.  相似文献   

3.
The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.  相似文献   

4.
Most bacteria produce the dUMP precursor for thymine nucleotide biosynthesis using two enzymes: a dCTP deaminase catalyzes the formation of dUTP and a dUTP diphosphatase catalyzes pyrophosphate release. Although these two hydrolytic enzymes appear to catalyze very different reactions, they are encoded by homologous genes. The hyperthermophilic archaeon Methanococcus jannaschii has two members of this gene family. One gene, at locus MJ1102, encodes a dUTP diphosphatase, which can scavenge deoxyuridine nucleotides that inhibit archaeal DNA polymerases. The second gene, at locus MJ0430, encodes a novel dCTP deaminase that releases dUMP, ammonia, and pyrophosphate. Therefore this enzyme can singly catalyze both steps in dUMP biosynthesis, precluding the formation of free, mutagenic dUTP. Besides differing from the previously characterized Salmonella typhimurium dCTP deaminase in its reaction products, this archaeal enzyme has a higher affinity for dCTP and its steady-state turnover is faster than the bacterial enzyme. Kinetic studies suggest: 1) the archaeal enzyme specifically recognizes dCTP; 2) dCTP deamination and dUTP diphosphatase activities occur independently at the same active site, and 3) both activities depend on Mg(2+). The bifunctional activity of this M. jannaschii enzyme illustrates the evolution of a suprafamily of related enzymes that catalyze mechanistically distinct reactions.  相似文献   

5.
dCMP deaminase from Bacillus subtilis has been purified 700-fold. In addition to the substrate, dCMP, the enzyme requires dCTP, Zn2+, and 2-mercaptoethanol, Mg2+ cannot substitute for Zn2+. The dCMP saturation curve is hyperbolic in the presence of saturating concentrations of dCTP and Zn2+. The dCTP saturation curve is sigmoidal, the sigmoidicity being dependent on the Zn2+ and dCMP concentrations. The molecular weight as determined by gel filtration is 170,000 both in the presence and in the absence of dCTP and Zn2+. In the absence of thiols, the enzyme is highly unstable. At 0 degrees, the half-life of the enzyme activity is 30 min. Addition of Zn2+ and dCTP protects against this inactivation. In the presence of a thiol, dCTP and Zn2+ protect the enzyme against heat inactivation at 50 degrees. A mutant lacking dCMP deaminase (dcd) was isolated. Labeling of the pyrimidine nucleotide pools reveals that in the parent strain, 45% of the dTTP pool is derived via dCMP deamination, the residual 55% being derived via reduction of a uridine nucleotide. Since the dcd mutant grows with the same doubling time as the parent strain, we conclude that uridine nucleotide reduction alone is capable of supplying sufficient dUMP for normalthymidine nucleotide synthesis.  相似文献   

6.
Deoxycytidylate deaminase isolated from normal human lymphocytes and from mononuclear leucocytes from patients with acute lymphoblastic leukemia, chronic lymphocytic leukemia and acute monocytic leukemia has been characterized in regard to the substrate, dAMP and the allosteric regulators dCTP and dTTP. The enzymes exhibited sigmoidal initial velocity versus dCMP concentration whereas in the presence of the activator, dCTP, Michaelis-Menten kinetics were obtained.At saturating substrate concentrations dTTP acted as an allosteric inhibitor of the enzyme isolated from non-stimulated as well as from stimulated lymphocytes. However, the enzymes isolated from the leukemic cells had lost the allosteric regulation by dTTP.At low substrate concentrations the competitive inhibitor, dAMP, activated all the enzymes. This activation was abolished in the presence of dCTP which indicates that dAMP might be involved in the regulation of dCMP deaminase activity and thus influence the dCTP and dTTP pools under physiological conditions.Abbreviations dCMP deaminase deoxycytidylate deaminase - PHA Phytohemagglutinin - ALL acute lymphoblastic leukemia - CLL chronic lymphocytic leukemia - AMOL acute monocytic leukemia - WBC white blood cells  相似文献   

7.
In Escherichia coli and Salmonella typhimurium about 80% of the dUMP used for dTMP synthesis is derived from deamination of dCTP. The dCTP deaminase produces dUTP that subsequently is hydrolyzed by dUTPase to dUMP and diphosphate. The dCTP deaminase is regulated by dTTP that inhibits the enzyme by binding to the active site and induces an inactive conformation of the trimeric enzyme. We have analyzed the role of residues previously suggested to play a role in catalysis. The mutant enzymes R115Q, S111C, S111T and E138D were all purified and analyzed for activity. Only S111T and E138D displayed detectable activity with a 30- and 140-fold reduction in kcat, respectively. Furthermore, S111T and E138D both showed altered dTTP inhibition compared to wild-type enzyme. S111T was almost insensitive to the presence of dTTP. With the E138D enzyme the dTTP dependent increase in cooperativity of dCTP saturation was absent, although the dTTP inhibition itself was still cooperative. Modeling of the active site of the S111T enzyme indicated that this enzyme is restricted in forming the inactive dTTP binding conformer due to steric hindrance by the additional methyl group in threonine. The crystal structure of E138D in complex with dUTP showed a hydrogen bonding network in the active site similar to wild-type enzyme. However, changes in the hydrogen bond lengths between the carboxylate and a catalytic water molecule as well as a slightly different orientation of the pyrimidine ring of the bound nucleotide may provide an explanation for the reduced activity.  相似文献   

8.
Several enzymatic activities involved in the biosynthetic pathways of nucleotides, including thymidine kinase, which has been used as a biochemical marker in studies of gene transfer, are induced by herpes simplex virus (HSV). The utility of additional markers prompted us to reanalyze the effects of HSV infection on the activities of two other enzymes for which direct selective methods can be devised: dCMP deaminase and CDP reductase. For this purpose, mutant Chinese hamster (lA1) cells devoid of dCMP deaminase activity or Syrian hamster (BHK-21/C13) cells were infected by HSV type 1 or 2, and the activities of thymidine kinase, dCMP deaminase, and CDP reductase were measured in the cell extracts. The reported induction of thymidine kinase and CDP reductase by HSV was confirmed, whereas the stimulation of dCMP deaminase activity could not be observed. For both cell lines, the HSV-induced CDP reductase differed from the host enzyme by sensitivity to inhibition by both dTTP and dATP. This property should be helpful in developing a selection system for this activity.  相似文献   

9.
Deoxycytidylate deaminase has been highly purified (1232-fold) from human leukemia CCRF-CEM cells. The native molecular weight of the enzyme is 108 000 and subunit molecular weight 50 500, suggesting that the native enzyme exists as a dimer. The enzyme exhibits a sigmoidal initial velocity vs substrate concentration curve and is regulated by allosteric effectors, dCTP and TTP. The curve relating substrate concentration to initial velocity was changed from a sigmoidal shape to a hyperbolic one by the activator dCTP, while the inhibitor TTP increased the sigmoidicity of the curve. The molecular weight of deoxycytidylate deaminase was unchanged in the presence of allosteric effectors, indicating that aggregation-disaggregation is not the basis of regulation. Deoxycytidylate deaminase exhibited the greatest affinity for the substrate dCMP, with lesser affinity for ara-CMP, and least affinity for CMP. Ara-CMP was an effective substrate in the presence of dCTP concentrations exceeding 4 microM. These data indicate that human neoplastic cell deoxycytidylate deaminase is a highly regulated allosteric enzyme, which is likely to have a significant influence on cellular dUMP, dCTP and TTP pools. These findings further suggest, that the enzyme through its influence on dUMP levels is likely to modulate the biochemical effects of pyrimidine antimetabolites active against the thymidylate synthetase reaction and in the presence of elevated dCTP pools will promote deamination of ara-CMP to the inactive ara-UMP.  相似文献   

10.
Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.  相似文献   

11.
A mutant V79 hamster fibroblast cell line lacking the enzyme dCMP deaminase was used to study the regulation of deoxynucleoside triphosphate pools by substrate cycles between pyrimidine deoxyribosides and their 5'-phosphates. Such cycles were suggested earlier to set the rates of cellular import and export of deoxyribosides, thereby influencing pool sizes (V. Bianchi, E. Pontis, and P. Reichard, Proc. Natl. Acad. Sci. USA 83:986-990, 1986). While normal V79 cells derived more than 80% of their dTTP from CDP reduction via deamination of dCMP, the mutant cells had to rely completely on UDP reduction for de novo synthesis of dTTP, which became limiting for DNA synthesis. Because of the allosteric properties of ribonucleotide reductase, CDP reduction was not diminished, leading to a large expansion of the dCTP pool. The increase of this pool was kept in check by a shift in the balance of the deoxycytidine/dCMP cycle towards the deoxynucleoside, leading to massive excretion of deoxycytidine. In contrast, the balance of the deoxyuridine/dUMP cycle was shifted towards the nucleotide, facilitating import of extracellular deoxynucleosides.  相似文献   

12.
The activities of dCMP deaminase and DNA polymerase I increased twofold and fivefold in BHK-21/C13 cells after infection by the virus of herpes simplex. The increases were greatly diminished, and under certain conditions prevented, by inclusion of actinomycin D or cycloheximide in the cell-virus system during the infective cycle. The dCMP deaminase purified from infected cells harvested 8h after infection differed from the deaminase purified from non-infected cells inasmuch as (a) it was more resistant to heating at 37 degrees C; (b) the substrate (dCMP) concentration at half-maximum velocity was lower; (c) maximum activation was achieved by a lower concentration of dCTP; (d) it was more resistant to inhibition by dTTP; and (e) it behaved differently when assayed in the presence of a herpes-virus-specific antiserum. The DNA polymerase activity in the infected cells was markedly decreased in the presence of the herpes-virus-specific antiserum.  相似文献   

13.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

14.
15.
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.  相似文献   

16.
2′-Deoxycytidylate deaminase [or deoxycytidine-5′-monophosphate (dCMP) deaminase, dCD] catalyzes the deamination of dCMP to deoxyuridine-5′-monophosphate to provide the main nucleotide substrate for thymidylate synthase, which is important in DNA synthesis. The activity of this homohexameric enzyme is allosterically regulated by deoxycytidine-5′-triphosphate (dCTP) as an activator and by deoxythymidine-5′-triphosphate as an inhibitor. In this article, we report the crystal structures of dCMP deaminase from Streptococcus mutans and its complex with dCTP and an intermediate analog at resolutions of 3.0 and 1.66 Å. The protein forms a hexamer composed of subunits adopting a three-layer α/β/α sandwich fold. The positive allosteric regulator dCTP mainly binds at the interface between two monomers in a molar ratio of 1:1 and rearranges the neighboring interaction networks. Structural comparisons and sequence alignments revealed that dCMP deaminase from Streptococcus mutans belongs to the cytidine deaminase superfamily, wherein the proteins exhibit a similar catalytic mechanism. In addition to the two conserved motifs involved in the binding of Zn2 +, a new conserved motif, (G43YNG46), related to the binding of dCTP was also identified. N-terminal Arg4, a key residue located between two monomers, binds strongly to the γ phosphate group of dCTP. The regulation signal was transmitted by Arg4 from the allosteric site to the active site via modifications in the interactions at the interface where the substrate-binding pocket was involved and the relocations of Arg26, His65, Tyr120, and Arg121 to envelope the active site in order to stabilize substrate binding in the complex. Based on the enzyme-regulator complex structure observed in this study, we propose an allosteric mechanism for dCD regulation.  相似文献   

17.
Deoxycytidine triphosphate deaminase (EC 3.5.4., dCTP aminohydrolase) of Salmonella typhimurium LT2 has been pruified 500-fold. The reaction requires the presence of Mg-2plus, Mn-2plus, Ca-2lus, or Co-2plus. Kinetics of the reaction with varying Mg-2plus concentrations, keeping the concentration of dCTP constant, suggests that the true substrate of the reaction is MgdCTP. The dependence of the rate of reaction on dCTP concentration in the presnece of 5-fold excess of Mg-2plus is sigmoid, with a Hill coefficient of 1.7. The enzyme is specifically inhibited by dTTP and dUTP. In the presence of increasing dTTP concentrations the sigmoidicity of the substrate saturation curves increases. With 0.2 and 0.4 mM dTTP the Hill coefficients are 2.6 and 3.0, respectively. Despite several attempts no dissociation of the substrate site and the inhibitor site of the enzyme was achieved.  相似文献   

18.
dCMP deaminase was partially purified from BHK-21/C13 cells grown in culture. The molecular weight of the enzyme was estimated by gel filtration and gradient centrifugation to be 130000 and 115000 respectively. The enzyme had a pH optimum of 8.4. Its activity versus substrate concentration curve was sigmoid, the substrate concentration at half-maximal velocity being 4.4mm. dCTP activated the deaminase maximally at 40μm, gave a hyperbolic curve for activity versus dCMP concentration and a Km value for dCMP of 0.91mm. dCTP activation required the presence of Mg2+ or Mn2+ ions. dTTP inhibited the deaminase maximally at 15μm; the inhibition required the presence of Mg2+ or Mn2+ ions. The enzyme was very heat-labile but could be markedly stabilized by dCTP at 0.125mm and ethylene glycol at 20% (v/v).  相似文献   

19.
The hexameric allosteric enzyme deoxycytidylate aminohydrolase from donkey spleen is shown by equilibrium dialysis to bind specifically the allosteric inhibitor, dTTP, the activator dCTP, and the substrate analog dAMP each at six sites (the dTTP and dCTP sites may or may not be identical). These conclusions contrast with earlier ones that there were four sites for each effector; reasons for the discrepancy are discussed. With the knowledge of site numbers and the kinetic information from the accompanying paper it is concluded that the kinetic cooperativity of the enzyme excludes a concerted conformational transition mechanism. Amino acid analysis gives a molecular weight of 18,842 Da per subunit, i.e., 113,052 for the hexamer. A new simplified purification of homogeneous enzyme from donkey spleen probably useful for dCMP aminohydrolase from other sources is described.  相似文献   

20.
Thymidylate biosynthesis via the methylation of dUMP is required for DNA replication in Rickettsia prowazekii, an obligate intracytoplasmic bacterium. In theory, dUMP synthesis could occur either by the deamination of deoxycytidine nucleotides or by the reduction of uridine nucleotides. Accordingly, the incorporation of both radiolabeled cytidine and uridine into the thymidylate of R. prowazekii was examined. After DNA hydrolysis and high-performance liquid chromatography, it was determined that 85% of the rickettsial thymidylate was derived from cytidine and the remaining 15% was derived from uridine. These findings were supported by the identification of a dCTP deaminase activity in extracts of R. prowazekii. Extracts of R. prowazekii deaminated 1.7 +/- 0.3 nmol of dCTP/min/mg of protein (a value calculated to suffice for rickettsial growth), and no measurable activity was observed with dCMP as the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号