首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

2.
The possibility of a role for phosphate metabolism in the photosynthetic regulation that occurs during frost hardening was investigated in winter rye (Secale cereale L. cv. Musketeer). Leaves of frost-hardened and non-hardened winter rye were studied during photosynthetic induction, and at steady state after being allowed to take up 20 mM orthophosphate through the transpiration stream for 3 h. At the growth irradiance (350 mol·m-2·s-1) frost-hardening increased the stationary rate of CO2-dependent O2 evolution by 57% and 25% when measured at 5 and 20° C, respectively. Frosthardening also reduced the lag phase to stationary photosynthesis by 40% at 5° C and decreased the susceptibility of leaves to oscillations during induction and after interruption of the actinic beam during steady-state photosynthesis. These responses are all indicative of increased phosphate availability in frost-hardened leaves. As reported previously by Öquist and Huner (1993, Planta 189, 150–156), frost-hardening also decreased the reduction state of QA, the primary, stable quinone acceptor of PSII, and decreased the sensitivity of winter rye to photoinhibition of photosynthesis. Non-hardened rye leaves fed orthophosphate also showed an increased photosynthetic capacity (25% at 20° C and light saturation), lower reduction state of QA, a reduced sensitivity to photoinhibition and lower susceptibility to oscillations resulting from a brief interruption of the actinic light. Thus, the data indicate that phosphate metabolism plays a key role in photosynthetic acclimation of winter rye to low temperatures.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in dark-and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in dark-and light-acclimated leaves, respectively - Fv variable fluoresence (Fm -Fo) in dark-acclimated leaves - Fv variable fluorescence (Fm-Fo) in light-acclimated leaves - PCR photosynthetic carbon reduction - PPFD photosynthetic photon flux density - QA the primary, stable quinone acceptor of PSII - qP photochemical quenching of fluorescence - qN non-photochemical quenching of fluorescence This work was supported by the Swedish Natural Sciences Research Council. The authors are indebted to Dr. N. Huner, Department of Plant Sciences, UWO, London, Canada, for helpful discussions during the initiation of this work and for the gift of rye seeds.  相似文献   

3.
Ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.) seedlings were grown in the field under three levels of natural light: (1) open, (2) gap and (3) shade. Light acclimation of photosynthesis was characterized by means of modulated chlorophyll a fluorescence of intact leaves and growth parameters were measured at the end of the growing season. Measurements of maximum photochemical efficiency (Fv/Fm) of dark-adapted leaves at intervals through the day showed that ash had a higher Fv/Fm than beech in open and gap plots but not in shade plots. This indicated a larger build-up of photoinhibition in beech under gap and open conditions. Steady-state light response curves of the operating efficiency of PSII (Fq/Fm), the electron transport rate (ETR) and the photochemical efficiency factor (Fq/Fv) showed greater variability across light treatments in ash than in beech. Both species exhibited similar responses of non-photochemical quenching (NPQ) to light. When the data were normalized to the mean maximum irradiance in the growth environment, all photochemical parameters showed a reduction in variation across treatments, indicating that light acclimation in the two species occurred primarily through adjustments in rates of photochemistry. Adjustments in thermal heat dissipation were small in both species. This pattern was stronger in ash, suggesting a greater degree of phenotypic plasticity in photosynthetic capacity in this earlier successional species. Contrary to our expectations, the build-up of photoinhibition in beech did not appear to have a negative effect on total biomass accumulation relative to ash.Abbreviations ETR Electron transport rate - Fm Maximal fluorescence in the dark-adapted state - Fo Minimal fluorescence in the dark-adapted state - Fs Steady-state fluorescence in actinic light - Fv=FmFo Variable fluorescence in the dark-adapted state - Fv/Fm Maximum photochemical efficiency of photosystem II in the dark-adapted state - Fm Maximal fluorescence in actinic light - Fo Minimal fluorescence in actinic light - Fv=FmFo Variable fluorescence in actinic light - Fq=FmFs; Fq/Fm Operating efficiency of photosystem II in actinic light - Fq/Fv Efficiency factor of PSII photochemistry (also referred to as qP—photochemical quenching) - Fv/Fm Maximum efficiency of PSII under actinic light if all reaction centres were open - NPQ Stern-Volmer non-photochemical quenching - PPFD Photosynthetic photon flux density (mol m–2 s–1) refers to photosynthetically active irradiance measured with a cosine-corrected quantum sensor - PPFFR Photosynthetic photon flux fluence rate (mol m–2 s–1) refers to photosynthetically active irradiance measured with a spherical quantum sensor. Fluorescence nomenclature follows Oxborough and Baker (2000).  相似文献   

4.
Bulychev A  Vredenberg W 《Planta》2003,218(1):143-151
Pulse-amplitude modulated microfluorometry and an extracellular pH microprobe were used to examine light-induced spatial heterogeneity of photosynthetic and H+-transporting activities in cells of Chara corallina Klein ex Willd. Subcellular domains featuring different PSII photochemical activities were found to conform to alternate alkaline and acid zones produced near the cell surface, with peaks of PSII activity correlating with the position of acid zones. Buffers eliminated pH variations near the cell surface but did not destroy the variations in PSII photochemical yield (F/Fm). When a dark-adapted cell was exposed to actinic light, the PSII effective yield decreased within 5–15 min in the alkaline regions but rose after the initial decline in the acid regions. The light-induced decrease in F/Fm in the alkaline regions occurred prior to or synchronously with the steep rise in local pH. The kinetics of F/Fm, Fm, and F observed in alkaline regions under overall illumination of Chara cells were replaced by those typical of acid regions, when the illumination area size was restricted to 1.5–2 mm. The data show that photoinduced patterns in photosynthetic activity are not predetermined by the particular structural organization of alkaline and acid cell regions but are subject to dynamic changes.Abbreviations APW artificial pond water - a.u. arbitrary units - Fo and Fm minimal and maximal chlorophyll fluorescence yields in a dark-adapted cell - F and Fm actual (running) and maximal fluorescence yields in a cell exposed to actinic light - F/Fm(FmF)/Fm effective quantum yield of PSII photochemistry - pHo pH of the medium near the cell surface - PSII photosystem II  相似文献   

5.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

6.
Analyses of chlorophyll fluorescence and photosynthetic oxygen evolution were conducted to understand why cold-hardened winter rye (Secale cereale L.) is more resistant to photoinhibition of photosynthesis than is non-hardened winter rye. Under similar light and temperature conditions, leaves of cold-hardened rye were able to keep a larger fraction of the PS II reaction centres in an open configuration, i.e. a higher ratio of oxidized to reduced QA (the primary, stable quinone acceptor of PSII), than leaves of non-hardened rye. Three fold-higher photon fluence rates were required for cold-hardened leaves than for non-hardened leaves in order to establish the same proportion of oxidized to reduced QA. This ability of cold-hardened rye fully accounted for its higher resistance to photoinhibition; under similar redox states of qa cold-hardened and non-hardened leaves of winter rye exhibited similar sensitivities to photoinhibition. Under given light and temperature conditions, it was the higher capacity for light-saturated photosynthesis in cold-hardened than in non-hardened leaves, which was responsible for maintaining a higher proportion of oxidized to reduced QA. This higher capacity for photosynthesis of cold-hardened leaves also explained the increased resistance of photosynthesis to photoinhibition upon cold-hardening.Abbreviations Fm and F'm fluorescence when all PSII reaction centres are closed in dark- and light-acclimated leaves, respectively - Fo and F'o fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fv variable fluorescence (F'm-F'o) under steady-state light conditions - Fv/Fm the ratio of variable to maximum fluorescence as an expression of the maximum photochemical yield of PSII in dark-acclimated leaves - QA the primary, stable, quinone electron acceptor of PSII - qN non-photochemical quenching of fluorescence due to high energy state (pH) - qp photochemical quenching of fluorescence - RH cold-hardened rye - RNH non-hardened rye This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and by the Swedish Natural Science Research Council.  相似文献   

7.
Wen X  Qiu N  Lu Q  Lu C 《Planta》2005,220(3):486-497
Thermotolerance of photosystem II (PSII) in leaves of salt-adapted Artemisia anethifolia L. plants (100–400 mM NaCl) was evaluated after exposure to heat stress (30–45°C) for 30 min. After exposure to 30°C, salt adaptation had no effects on the maximal efficiency of PSII photochemistry (Fv/Fm), the efficiency of excitation capture by open PSII centers (Fv/Fm), or the actual PSII efficiency (PSII). After pretreatment at 40°C, there was a striking difference in the responses of Fv/Fm, Fv/Fm and PSII to heat stress in non-salt-adapted and salt-adapted leaves. Leaves from salt-adapted plants maintained significantly higher values of Fv/Fm, Fv/Fm and PSII than those from non-salt-adapted leaves. The differences in Fv/Fm, Fv/Fm and PSII between non-salt-adapted and salt-adapted plants persisted for at least 12 h following heat stress. These results clearly show that thermotolerance of PSII was enhanced in salt-adapted plants. This enhanced thermotolerance was associated with an improvement in thermotolerance of the PSII reaction centers, the oxygen-evolving complexes and the light-harvesting complex. In addition, we observed that after exposure to 42.5°C for 30 min, non-salt-adapted plants showed a significant decrease in CO2 assimilation rate while in salt-adapted plants CO2 assimilation rate was either maintained or even increased to some extent. Given that photosynthesis is considered to be the physiological process most sensitive to high-temperature damage and that PSII appears to be the most heat-sensitive part of the photosynthetic apparatus, enhanced thermotolerance of PSII may be of significance for A. anethifolia, a halophyte plant, which grows in the high-salinity regions in the north of China, where the air temperature in the summer is often as high as 45°C.  相似文献   

8.
The effects of temperature on the dark relaxation kinetics of nonradiative energy dissipation in photosystem II were compared in lettuce (Lactuca sativa L.) chloroplasts and leaves of Aegialitis annulata R. Br. After high levels of violaxanthin de-epoxidation in the light, Aegialitis leaves showed a marked delay in the dark relaxation of nonradiative dissipation, measured as non-photochemical quenching (NPQ) of photosystem II chlorophyll a fluorescence. Aegialitis leaves also maintained a moderately high adenylate energy charge at low temperatures during and after high-light exposure, presumably because of their limited carbon-fixation capacity. Similarly, dark-sustained NPQ could be induced in lettuce chloroplasts after de-epoxidizing violaxanthin and light-activating the ATP synthase. The duration and extent of dark-sustained NPQ were strongly enhanced by low temperatures in both chloroplasts and leaves. Further, the NPQ sustained at low temperatures was rapidly reversed upon warming. In lettuce chloroplasts, low temperatures sharply decreased the ATP-hydrolysis rate while increasing the duration and extent of the resultant trans-thylakoid proton gradient that elicits the NPQ. This was consistent with a higher degree of energy-coupling, presumably due to reduced proton diffusion through the thylakoid membrane at the lower temperatures. The chloroplast adenylate pool was in equilibrium with the adenylate kinase and therefore both ATP and ADP contributed to reverse coupling. The low-temperature-enhanced NPQ quenched the yields of the dark level (Fo) and the maximal (Fm) fluorescence proportionally in both chloroplasts and leaves. The extent of NPQ in the dark was inversely related to the efficiency of photosystem II, and very similar linear relationships were obtained over a wide temperature range in both chloroplasts and leaves. Likewise, the dark-sustained absorbance changes, caused by violaxanthin de-epoxidation (A508nm) and energy-dependent light scattering (A536nm) were strikingly similar in chloroplasts and leaves. Therefore, we conclude that the dark-sustained, low-temperature-stimulated NPQ in chloroplasts and leaves is apparently directly dependent on lumen acidification and chloroplastic ATP hydrolysis. In leaves, the ATP required for sustained NPQ is evidently provided by oxidative phosphorylation in the mitochondria. The functional significance of this quenching process and implications for measurements of photo-protection versus photodamage in leaves are discussed.Abbreviations and Symbols A antheraxanthin - Chl chlorophyll - DPS de-epoxidation state of the xanthophyll cycle, ([Z+A]/[V+A+Z]) - F, F steady-state fluorescence in the absence, presence of thylakoid energization - Fo, Fo dark fluorescence level in the absence, presence of thylakoid energization - Fm, Fm maximal fluorescence in absence, presence of thylakoid energization - NPQ nonphotochemical quenching (Fm/Fm)–1 - V violaxanthin - Z zeaxanthin - NRD nonradiative dissipation - PFD photon flux density - [2ATP+ADP] - pH trans-thylakoid proton gradient - S pH-dependent light scattering - PSII (Fm–F)/Fm, photon yield of PSII photochemistry at the actual reduction state in the light or dark - [ATP+ADP+AMP] We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. Support from an NSF/USDA/DOE postdoctoral training grant to A.G. is gratefully acknowledged. A.G. also wishes to thank Prof. Govindjee for valuable discussions. C.I.W.-D.P.B. Publication No. 1197.  相似文献   

9.
Photosystem-two (PSII) in the chloroplasts of higher plants and green algae is not homogeneous. A review of PSII heterogeneity is presented and a model is proposed which is consistent with much of the data presented in the literature. It is proposed that the non-quinone electron acceptor of PSII is preferentially associated with the sub-population of PSII known as PSIIß.Abbreviations and symbols ATP Adenosine triphosphate - Chl Chlorophyll - C550 Absorbance bandshift at 550 nm; proportional to [QA -] - D, D Components involved ir electron donation to P680 - pH Transthylakoid proton gradient - Transthylakoid electrical gradient - DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea referred to as diuron - E h Oxidation-reduction potential - E m Cxidation-reduction midpoint potential - EPR Electron paramagnetic resonance - Fm Fluorescence yield when all traps are closed - Fo Fluorescence yield when all traps are open - Fv Variable fluorescence equal to Fm-Fo - Fi Initial fluorescence yield, (usually equivalent to Fo in dark-adapted thylakoids) - Hepes 2-hydroxyethylpiperazine-N-2-ethane sulphonic acid - LHCP Light-harvesting chlorophyll a/b binding protein - PQ Plastoquinone - PSII Photosystem II - P680 Reaction centre chlorophyll of PSII - P518 Absorbance bandshift at 518 nm, reflects asymmetric charge distribution across the thylakoid membrane - QA, QH , Q1 Primary stable plastoquinone electron acceptor of PSII; a quencher of fluorescence - Q B , B, R Plastoquinone associated with the Q B -protein, the two-electron gate - Q D , Q2, X a Non-quinone electron acceptor of PSII - X320 Absorbance bandshift at 320 nm; semiquinone anion indicator  相似文献   

10.
Summary The angular dependence of1JC,H in model compounds related to -linked oligosaccharides has been established by FPT INDO quantum chemical calculations. Values calculated for models of (1 1)-, (1 2)-, (1 3)- and (1 4)-linked disaccharides were compared, and the effect of the orientation of HO-2 elucidated. The angular dependence of1JC,H on the torsional angles H and H and the solvent dielectric constant (s) was characterized in the form:1JC,H = A cos2+B cos + C sin2 + D since + E + Fe. The1JC,H values, measured by DEPT methods for C-1-H-1 and C-X-H-X in cellobiose, cyclic trisaccharide and hexopyranoses were used to adjust the calculated angular dependences. Based on the occurrence of the conformers for agarobiose, neoagarobiose, mannobiose and methyl -xylobioside, the thermodynamically averaged <1JC,H > values were calculated. The results obtained (<1JC-1,H-1 > 162.4, <1JC-4, H-4 > 147.6 Hz for methyl -xylobioside; <1JC-1,H-1 > 162.4 and <1JC-4,H-4] > 147.6 Hz for mannobiose; <1JC-1,H-1 > 162.8 Hz for neo agarobiose and <1JC-1,H-1 > 163.2 Hz for agarobiose) agree well with the experimental values of 162.7, 147.5, 160.4, 147.2, 160.9 and 165.7 Hz, respectively.  相似文献   

11.
Chl fluorescence of mature leaves in low-temperature treated plants was studied under identical measuring conditions in a segregating population of the F3 offspring of a cross between a chilling-tolerant and a chilling-sensitive tomato species. Through recombination of genes involved in photosynthesis, the population revealed a wide, continuous variability of photosynthetic capacity from plants performing much worse to those performing better than the parental lines of the cross. In the parental species, a nearly linear correlation was observed between photochemical chl fluorescence quenching (qP) and O2 evolution over a wide temperature range. Across the F3 generation, still a weak correlation between the two parameters was found at 20 °C, but not at 10 °C, when measured under identical conditions. This indicates that the fraction of open reaction centres could at least in part be adjusted to the photosynthetic capacity of the individual genotype. However, the correlation was so weak, that the previously suggested use of qP as a selection criterion for chilling tolerance of photosynthesis in breeding programs is regarded as doubtful, as long as photosynthesis rates are not measured in addition. Quantum efficiency of Photosystem II (PSII) was strongly dependent on qP both at 20 and at 10 °C measuring temperature and depended on the quantum efficiency of open reaction centres (Fv/Fm) at 20, but not at 10 °C. Fv/Fm, in turn, correlated negatively with the processes of energy dissipation by the mechanisms of non-photochemical quenching (qN), i.e. its fast-relaxing component (qF) and photoinhibitory quenching (qI).  相似文献   

12.
Doris Godde  Heidrun Dannehl 《Planta》1994,195(2):291-300
To test wether chlorosis is induced by photoinhibitory damage to photosystem II (PSII), onset of chlorosis and loss of PSII function were compared in young spinach (Spinaciae oleracea L.) plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll already occurred after the first week of deficiency and preceded any permanent functional inhibition of the photosynthetic apparatus. Permanent disturbancies of photosynthetic electron transport measured in isolated thylakoids and of PSII function, determined via the ratio of variable fluorescence to maximal fluorescence, Fv/Fm, could be detected only after the second week of deficiency. After the third week, the plants had lost about 60% of their chlorophyll; even so, fluorescence data indicated that 85% of the existing PSII was still capable of initiating photosynthetic electron transport. However, quenching analysis of steady-state fluorescence showed an early increase in non-photochemical quenching and in down-regulated PSII centres with low steady-state quantum efficiency. Together with the down-regulation of PSII centres, a 1.4-fold increase in D1-protein synthesis, measured as incorporation of [14C]leucine, could be observed at the end of the first week before any loss of D1 protein, chlorophyll or photosynthetic activity could be detected. Immunological determiation by Western-blotting did not show a change in D1-protein content; thus, at this time, D1 protein was not only faster synthesised but was also faster degraded than before the imposition of mineral deficiency. The increased turnover was high enough to prevent any loss or functional inhibition of PSII. After 3 weeks, D1-protein synthesis on a chlorophyll basis was further stimulated by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%, showing that the D1-protein was now degraded faster than it was synthesised. Immunological determination and electron-transport measurements showed that together with the loss of D1 protein the other polypetides of PSII were also degraded, resulting in a specific loss of PSII centres. The degradation of PSII centres prevented a large accumulation of damaged PSII centres. We assume that the decrease in PSII centres initiates the breakdown of the other thylakoid proteins.Abbreviations Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed under steady-state conditions - Fv yield of variable fluorescence, (difference between Fo and Fm) - F yield of variable fluorescence under steady-state conditions, difference between Fm and Ft, the fluorescence yield under steady-state conditions - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qp photochemical quenching - qn non-photochemical quenching This work was supported by grants from the Bundesminister für Forschung und Technologie and the German Israeli Foundation. The authors thank Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) for fruitful discussions.  相似文献   

13.
The quenching of variable fluorescence yield (qN) and the quenching of dark level fluorescence yield (q0) directly atributable to high-energy-state fluorescence quenching (qE) was studied to distinguish between energy dissipation in the antenna and light harvesting complexes (antenna quenching) and energy dissipation at the reaction centres (reaction centre quenching). A consistent relationship was obtained between qN and q0 in barley leaves, the green alga Dunaliella C9AA and in pea thylakoids with 2,3,5,6-tetramethyl-p-phenylene diamine (DAD) as mediator of cyclic electron flow around PS 1. This correlated well with the relationship obtained using m-dinitrobenzene (DNB), a chemical model for antenna quenching, to quench fluorescence in Dunaliella C9AA or pea thylakoids. The results also correlated reasonably well with theoretical predictions by the Butler model for antenna quenching, but did not correlate with the predictions for reaction centre quenching. It is postulated that qE quenching therefore occures in the antenna and light harvesting complexes, and that the small deviation from the Butler prediction is due to PS 2 heterogeneity.Abbreviations 9-aa 9-aminoacridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA Ethylenediaminetetra-acetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - Mes 2-(N-morpholino) prophanesulfonate - PS 1 photosystem 1 - PS 2 photosystem 2 - QA and QB primary and secondary stable electron acceptors of photosystem 2 - qN non-photochemical fluorescence quenching coefficient - qE high-energy-state fluorescence quenching coefficient - q0 quenching coefficient for F0 - F0 dark level fluorescence yield - Fm maximum fluorescence yield - Fv variable fluorescence yield - Fv/Fm ratio of variable to total fluorescence yield - DAD 2,3,5,6-tetramethyl-p-phenylene diamine - DNB m-dinitrobenzene  相似文献   

14.
The effect of repeated exposure to high light (1200 mol · m–2 · s–1 photosynthetic photon flux density, PPFD) at 5° C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in FV/FM (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of FV/FM such that the leaves exhibited an average morning FV/FM of 0.651 ± 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 mol · m–2 · s–1 indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5° C and 250 mol · m–2 · s–1 PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed fv/fm and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a longterm, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a longterm, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.Abbreviations and Symbols Chl chlorophyll - HL high light - PPFD photosynthetic photon flux density - FO minimum fluorescence in the dark-adapted state - FM maximum fluorescence in the dark-adapted state - FV maximum variable fluorescence in the dark-adapted state (FM-FO) - FV/FV photosynthetic efficiency of the dark-adapted state - fV/fM photosynthetic efficiency of the light-adapted steady state - qP photochemical quenching parameter - qN non-photochemical quenching parameter - e yield of electron transport and equals qP · fV/fM - 1-qO FO quenching parameter - app apparent photon yield. The assistance of Amy So is gratefully acknowledged. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and the Swedish Natural Sciences Research Council.  相似文献   

15.
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral, Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII Functional absorption cross-section for PSII - Fo, Fm Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units) - Fv Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless - Fv/Fm Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless - F, Fm Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units) - F/Fm Quantum yield of photochemistry in PSII measured at steady state under ambient light Communicated by R.C. Carpenter  相似文献   

16.
Chlorophyll fluorescence, light scattering, the electrochromic shift P515 and levels of some photosynthetic intermediates were measured in illuminated leaves. Oxygen and CO2 concentrations in the gas phase were varied in order to obtain information on control of Photosystem II activity under conditions such as produced by water stress, when stomatal closure restricts access of CO2 to the photosynthetic apparatus. Light scattering and energy-dependent fluorescence quenching indicated a high level of chloroplast energization under high intensity illumination even when linear electron transport was curtailed in CO2-free air or in 1% oxygen with 35 ll-1 CO2. Calculations of the phosphorylation potential based on measurements of phosphoglycerate, dihydroxyacetone phosphate and NADP revealed ratios of intrathylakoid to extrathylakoid proton concentrations, which were only somewhat higher in air containing 35 l l-1 CO2 than in CO2-free air or 1% oxygen/35 l l-1 CO2. Anaerobic conditions prevented appreciable chloroplast energization. Acceptor-limitation of electron flow resulted in a high reduction level of the electron transport chain, which is characterized by decreased oxidation of P700, not only under anaerobic conditions, but also in air, when CO2 was absent, and in 1% oxygen, when the CO2 concentration was reduced to 35 ll-1. Efficient control of electron transport was indicated by the photoaccumulation of P700 + at or close to the CO2 compensation point in air. It is proposed to require the interplay between photorespiratory and photosynthetic electron flows, electron flow to oxygen and cyclic electron flow. The field-indicating electrochromic shift (P515) measured as a rapid absorption decrease on switching the light off followed closely the extent of photoaccumulation of P700 + in the light.Abbreviations F, F0, F0, FM, FM chlorophyll fluorescence levels - GA glyceraldehyde - P515 field indicating rapid absorption change peaking at 522 nm - QA primary quinone acceptor in Photosystem II - QN non-photochemical quenching of chlorophyll fluorescence - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

17.
Millisecond luminescence and fluorescence, from an intact tobacco (Nicotiana tabacum) leaf, were measured simultaneously during the induction period, as a function of the time. This was accomplished using a luminescence apparatus which separated out the faster luminescence components by subtraction of the accumulated slow-decaying ones. An antiparallel correlation between the two was observed, but only during a part of the induction period starting with the first fluorescence peak where the fluorescence decreases to a quasi plateau level. During this induction phase, luminescence rose very prominently to a maximum while fluorescence decreased. This correlation fits a linear dependence of the luminescence on the extent of RCs openness, as monitored by the photochemical quenching of the fluorescence. It may be concluded that during this induction phase, all other factors, which modulate luminescence (e.g. membrane potential), have become already steady and that the millisecond delayed luminescence reflects the photochemical reaction in an open center (i.e. with QA oxidized). This is further supported by steady-state experiments in thylakoid membranes. No correlations between luminescence and either momentary (F) or maximum (Fm) fluorescence during later induction phases can be pinpointed with confidence, although a trend of a parallel decrease at certain time intervals can be seen occasionally. Likewise, there is no relationship between the two in the very initial induction phase, during the rise of fluorescence from Fo to Fm, as noted earlier. This lack of correlation is presumably due to the dependence of luminescence on other parameters, which vary during these induction phases. The implications of these observations are discussed.Abbreviations RC reaction center - F, Fo, Fm momentary fluorescence level and levels for completely open and closed RCs, at any time during the induction period - Fo, Fm maximum values of Fo and Fm obtained for a dark adapted leaf - Fp the first peak fluorescence level in the fluorescence induction curve (Fp Fm) - qP photochemical quenching coefficient - qN non-photochemical quenching coefficient - L momentary luminescence intensity - Lm maximum value of L in the luminescence induction curve  相似文献   

18.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

19.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

20.
G. Laskay  E. Lehoczki  A. L. Dobi  L. Szalay 《Planta》1986,169(1):123-129
The effects of the pyridazinone compound SAN 9785 on the photosynthetic competence of leaves, on the photochemical activity of isolated thylakoids and on the formation and spectral properties of chlorophyll-protein complexes were studied during a 72-h greening period of detached etiolated leaves of barley (Hordeum vulgare L. cv. Horpácsi kétsoros). It was established that i) the photosynthetic capacity of the leaves decreased considerably (by 80 and 90%, as determined by14CO2 fixation and fast fluorescence induction measurements, respectively); ii) the photochemical activity of isolated thylakoids from water to potassium ferricyanide and from dichlorophenol indophenol/ascorbate to methylviologen exhibited only slight reductions when expressed on a chlorophyll basis compared with the control; iii) the slow fluorescence induction curves of the treated leaves demonstrated the presence of a peculiar fluorescence component interrupting the quenching of fluorescence at around 1 min illumination; iv) a shortage of the chlorophyll-protein complex of photosystem I (CPI) occurred with a higher content of the monomer of the light harvesting complex in the thylakoids of treated leaves; and v) the fluorescence spectrum of the CPI band present in treated leaves indicates the destruction of the structural integrity of this complex during isolation from the membrane.Abbreviations Chl chlorophyll - CPI, CPII chlorophyll-protein complexes of the reaction centres of PSI and PSII - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPIP 2,6-dichlorophenol indophenol - DPIPH2 chemically reduced form of DPIP - F o fluorescence of constant yield - F v fluorescence of variable yield - F i ,F m mitial and maximum yield of fluorescence - LHCP3 monomer of the light-harvesting complex - LHCP2 and LHCP1 oligomers of the light-harvesting complex LHCP3 - PSI, PSII photosystems I, II - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone, also known as BASF 13-338 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号