首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stability of a Lac repressor mediated "looped complex"   总被引:3,自引:0,他引:3  
M Brenowitz  A Pickar  E Jamison 《Biochemistry》1991,30(24):5986-5998
The quantitation of the stability of a protein-mediated "looped complex" of the Lac repressor and DNA containing two protein-binding sites whose centers of symmetry are separated by 11 helical turns (114 bp) was accomplished by footprint and gel mobility-shift titration techniques. Lac repressor binding to this DNA was only moderately cooperative; a cooperative free energy of -1.0 kcal/mol was calculated in a model-independent fashion from the individual-site loading energies obtained from the footprint titration studies. In order to partition the cooperative binding energy into components representing the dimer-tetramer association of Lac repressor and the cyclization probability of the intervening DNA, advantage was taken of the presence of experimental measures that were in proportion to the concentration of the looped complex present in solution. One measure was the DNase I hypersensitivity observed in footprint titrations in bands located between the two binding sites. The second measure resulted from the electrophoretic resolution in the gel mobility-shift titrations of the band representing the doubly liganded "tandem complex" from the band representing the singly liganded complexes, including the looped complex. Analysis of the footprint and mobility-shift titration data utilizing this additional information showed that approximately 65% of the molecules present in solution are looped complexes at pH 7.0, 100 mM KCl, and 20 degrees C when the binding sites on the DNA are saturated with protein. Reconciliation of the observed low binding cooperativity and the high proportion of looped complexes could only be obtained when the titration data were analyzed by a model in which Lac repressor tetramers dissociate into dimers in solution. The proportion of looped complexes present in solution is highly dependent on the dimer-tetramer association constant, delta Gtet. This result is consistent with the determination by high-pressure fluorescence techniques that Lac repressor tetramers dissociate with an association free energy comparable to their DNA-binding free energies [Royer, C. A., Chakerian, A. E., & Matthews, K. S. (1990) Biochemistry 29, 4959-4966]. However, when the value of delta Gtet of -10.6 kcal/mol (at 20 degrees C) reported by Royer et al. (1990) is assumed, the titration data demand that tetramers bind DNA with much greater affinity than dimers: a result inconsistent with the destabilization of tetramers by the operator observed in the dimer-tetramer dissociation studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
The binding of Escherichia coli Gal repressor to linear DNA fragments containing two binding sites (OE and OI) within the gal operon was analyzed in vitro with quantitative footprint and mobility-shift techniques. In vivo analysis of the regulation of the gal operon [Haber, R., & Adhya, S. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 9683-9687] has suggested the role of a regulatory "looped complex" mediated by the association of Gal repressor dimers bound at OE and OI. The binding of Gal repressor to a single site can be described by a model in which monomer and dimer are in equilibrium and only the dimer binds to DNA. At pH 7.0, 25 mM KCl, and 20 degrees C, the binding and dimerization free energies are comparable, suggesting that the equilibrium governing the formation of dimers may be important to regulation. The two intrinsic binding constants, delta GI and delta GE, and a constant describing cooperativity, delta GIE, were determined by footprint titration analysis as a function of pH, [KCl], and temperature. Only at 4 and 0 degrees C was delta GIE negative, signifying cooperative binding. These results are thought to be due to a weak dimer to tetramer association interface. delta GE and delta GI had maximal values between pH 6 and pH 7. The dependence of these constants on [KCl] corresponded to the displacement of approximately 2 ion equiv. The temperature dependence could be described by a change in the heat capacity, delta Cp, of -2.3 kcal mol-1 deg-1. Mobility-shift titration experiments conducted at 20 and 0 degrees C yielded values for delta GIE that were consistent with those resolved from the footprint analysis. Unique values of delta GIE were determined by analysis of mobility-shift titrations of Gal repressor with wild-type operator subject to the constraint that delta GE = delta GI: a procedure that eliminates the need to simultaneously analyze wild-type titrations with titrations of OE- and OI- operators.  相似文献   

4.
Using the binding of cI repressor protein to the lambda right and left operators as a model system, we have analyzed the two common experimental techniques for studying the interactions of genome regulatory proteins with multiple, specific sites on DNA. These are the quantitative DNase footprint titration technique [Brenowitz, M., Senear, D. F., Shea, M. A., & Ackers, G. K. (1986) Methods Enzymol. 130, 132-181] and the nitrocellulose filter binding assay [Riggs, A., Suzuki, H., & Bourgeois, S. (1970) J. Mol. Biol. 48, 67-83]. The footprint titration technique provides binding curves that separately represent the fractional saturation for each site. In principle, such data contain the information necessary to determine the thermodynamic constants for local site binding and cooperativity. We show that in practice, this is not possible for all values of the constants in multisite systems, such as the lambda operators. We show how these constants can nevertheless be uniquely determined by using additional binding data from a small number of mutant operators in which the number of binding sites has been reduced. The filter binding technique does not distinguish binding to the individual sites and yields only macroscopic binding parameters which are composite averages of the various local site and cooperativity constants. Moreover, the resolution of even macroscopic constants from filter binding data for multisite systems requires ad hoc assumptions as to a relationship between the number of ligands bound and the filter retention of the complex. Our results indicate that no such relationship exists. Hence, the technique does not permit determination of thermodynamically valid interaction constants (even macroscopic) in multisite systems.  相似文献   

5.
Grant GA  Xu XL  Hu Z  Purvis AR 《Biochemistry》1999,38(50):16548-16552
The binding of L-serine to phosphoglycerate dehydrogenase from E. coli displays elements of both positive and negative cooperativity. In addition, the inhibition of enzymatic activity by L-serine is also cooperative with Hill coefficients greater than 1. However, phosphate buffer significantly reduces the cooperative effects in serine binding without affecting the cooperativity of inhibition of activity. The maximal degree of inhibition and fluorescence quenching in Tris buffer occurs when an average of two serine binding sites out of four are occupied. This value increases to three out of the four sites at maximal levels of inhibition and quenching in phosphate buffer. The increase from two to three sites appears to be due to the ability of phosphate to reduce the site to site cooperative effects and render each ligand binding site less dependent on each other. The correlation between the level of inhibition and the fractional site occupancy indicates that in Tris buffer, one serine is bound to each interface at maximal effect. In the presence of phosphate, the order of binding appears to change so that both sites at one interface fill before the first site at the opposite interface is occupied. In each case, there is a good correlation between serine binding, conformational change at the regulatory site interfaces, and inhibition of enzyme activity. The observation that phosphate does not appear to have a similar effect on the cooperativity of inhibition of enzymatic activity suggests that there are two distinct cooperative pathways at work: one path between the four serine binding sites, and one path between the serine binding sites and the active sites.  相似文献   

6.
D F Senear  G K Ackers 《Biochemistry》1990,29(28):6568-6577
The effects of proton activity on the site-specific interactions of cI repressors with operator sites OR were studied by using DNase I footprint titration. Individual-site binding isotherms were obtained for the binding of repressor to each site of wild-type OR and of mutant operators in which binding to some sites is eliminated. The Gibbs energies for binding and for cooperativity (in every operator configuration) were determined at each pH (range 5-8). The proton-linked effects clearly account for a significant fraction of the difference in affinities for the three operator sites. The most dramatic effects on the repressor-operator binding interactions are at acid pH, and therefore do not involve the basic groups in the repressor N-terminal arm known to contact the DNA. Also, the proton-linked effects are different at the three operator sites as indicated by significantly different derivative relationships, partial derivative of ln k versus partial derivative of ln aH = net proton absorption (delta nu bar(H)). These results implicate ionizable repressor groups which may not contact the DNA and conformational differences between the three repressor-operator site complexes as being important components to the mechanism of site specificity. The extensive data base generated by these studies was also used to reevaluate the traditional models used to describe cooperativity in this system. The results confirm the lack of significant cooperative interaction between OR1 and OR3 at all conditions. However, the data for some experimental conditions are clearly inconsistent with the (selection) rule, that cooperative interaction between OR2 and OR3 is eliminated by ligation at OR1.  相似文献   

7.
The lactose promoter-operator region of Escherichia coli contains two binding sites for cyclic AMP receptor protein (CAP), two for the lactose repressor, and two for RNA polymerase. The high density of binding sites makes cooperative interactions between these proteins likely. In this study, we used the gel electrophoresis mobility shift assay and binding partition analysis techniques to determine whether the secondary CAP site influences the binding of CAP to the principal CAP site in the lactose promoter when both are present on a linear DNA molecule. Such an effect could occur through the formation of a bridged DNA-CAP-DNA structure, through the interaction of CAP molecules bound to each of the sites, or through allosteric effects caused by CAP-mediated DNA bending. We found, however, that the interaction of CAP with these sites was not cooperative, indicating that CAP sites 1 and 2 bind CAP in an independent manner.  相似文献   

8.
1H nuclear magnetic resonance has been employed to study the calcium-binding properties of the NH2- and COOH-terminal calcium-binding sites of the porcine intestinal calcium-binding protein. The protein was titrated with calcium in the presence of the chelator EDTA in order to determine the association constants of the protein for calcium relative to the known association constant of EDTA for calcium. The resulting data were compared with various models for the binding of calcium to two sites on the protein. Models were considered for which the two sites in the apoprotein have either intrinsically equal or unequal affinities for calcium. For each of these two cases, positive cooperativity, no cooperativity, and negative cooperativity were considered. The data fit best for the case of random binding to two independent sites with equivalent association constants of 1.0 +/- 0.1 X 10(7) M-1. The case of ordered binding to two sites with intrinsically different affinities, with concomitant positive affinity between the two sites so that the effective association constants were made equal, could not be mathematically excluded when only one protein NMR resonance is considered but can be shown to be implausible when the whole spectrum is considered.  相似文献   

9.
10.
11.
The interaction of proteins bound to sites widely separated on the genome is a recurrent motif in both prokaryotic and eukaryotic regulatory systems. Lac repressor mediates the formation of "DNA loops" by the simultaneous interaction of a single protein tetramer with two DNA-binding sites. The DNA-binding properties of a Lac repressor mutant (LacIadi) deficient in the association of protein dimers to tetramers was investigated. The results of quantitative footprint and gel mobility-shift titrations suggest that the wild-type Lac repressor (LacI+) binds cooperatively to two operator sites separated by 11 helical turns on a linear DNA restriction fragment by the formation of a "looped complex." LacIadi binds to this two-site operator non-cooperatively and without formation of a looped complex. These results demonstrate that the dimer-tetramer association of LacI+ is directly responsible for its cooperative binding and its ability to mediate formation of a looped complex. The Iadi mutation disrupts the monomer-dimer as well as eliminating the dimer-tetramer association equilibria while the DNA binding affinity of LacIadi to a single site is unchanged relative to the wild-type protein. These results suggest that DNA binding and dimer-tetramer association are functionally unlinked. The similarity of the DNA-binding properties of LacIadi and Gal repressor, a protein believed to function by mediating the formation of a looped complex, are discussed.  相似文献   

12.
Binding of cI repressor to DNA fragments containing the three specific binding sites of the right operator (OR) of bacteriophage lambda was studied in vitro over the temperature range 5-37 degrees C by quantitative footprint titration. The individual-site isotherms, obtained for binding repressor dimers to each site of wild-type OR and to appropriate mutant operator templates, were analyzed for the Gibbs energies of intrinsic binding and pairwise cooperative interactions. It is found that dimer affinity for each of the three sites varies inversely with temperature, i.e., the binding reactions are enthalpy driven, unlike many protein-DNA reactions. By contrast, the magnitude of the pairwise cooperativity terms describing interaction between adjacently site-bound repressor dimers is quite small. This result in combination with the recent finding that repressor monomer-dimer assembly is highly enthalpy driven (with delta H degrees = -16 kcal mol-1) [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry 30, 7817-7821] indicates that the associative contacts between site-bound repressors that mediate cooperativity are unlikely to be the same as those responsible for dimerization. The intrinsic binding enthalpies for all three sites are negative (exothermic) and nearly temperature-invariant, indicating no heat capacity changes on the scale of those inferred in other protein-DNA systems. However, the three operator sites are affected differentially by temperature: the intrinsic binding free energies for sites OR1 and OR3 change in parallel over the entire range, delta H0OR1 = -23.3 +/- 4.0 kcal mol-1 and delta H0OR3 = -22.7 +/- 1.2 kcal mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The bacteriophage lambda relies on interactions of the cI and cro repressors which self assemble and bind the two operators (O(R) and O(L)) of the phage genome to control the lysogenic to lytic switch. While the self assembly and O(R) binding of cI have been investigated in detail, a more complete understanding of gene regulation by phage lambda also requires detailed knowledge of the role of cro repressor as it dimerizes and binds at O(R) sites. Since dimerization and operator binding are coupled processes, a full elucidation of the regulatory energetics in this system requires that the equilibrium constants for dimerization and cooperative binding be determined. The dimerization constant for cro has been measured as a prelude to these binding studies. Here, the energetics of cro binding to O(R) are evaluated using quantitative DNaseI footprint titration techniques. Binding data for wild-type and modified O(R) site combinations have been simultaneously analyzed in concert with the dimerization energetics to obtain both the intrinsic and cooperative DNA binding energies for cro with the three O(R) sites. Binding of cro dimers is strongest to O(R)3, then O(R)1 and lastly, O(R)2. Adjacently bound repressors exhibit positive cooperativity ranging from -0.6 to -1.0 kcal/mol. Implications of these, newly resolved, energetics are discussed in the framework of a dynamic model for gene regulation. This characterization of the DNA-binding properties of cro repressor establishes the foundation on which the system can be explored for other, more complex, regulatory elements such as cI-cro cooperativity.  相似文献   

14.
Detecting cis-regulatory binding sites for cooperatively binding proteins   总被引:1,自引:0,他引:1  
Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account.  相似文献   

15.
The Escherichia coli purine repressor, PurR, binds to a 16-bp operator sequence and coregulates the genes for de novo synthesis of purine and pyrimidine nucleotides, formation of a one-carbon unit for biosynthesis, and deamination of cytosine. We have characterized the purified repressor. Chemical cross-linking indicates that PurR is dimeric. Each subunit has an N-terminal domain of 52 amino acids for DNA binding and a C-terminal 289-residue domain for corepressor binding. Each domain was isolated after cleavage by trypsin. Sites for dimer formation are present within the corepressor binding domain. The corepressors hypoxanthine and guanine bind cooperatively to distinct sites in each subunit. Competition experiments indicate that binding of one purine abolishes cooperativity and decreases the affinity and the binding of the second corepressor. Binding of each corepressor results in a conformation change in the corepressor binding domain that was detected by intrinsic fluorescence of three tryptophan residues. These experiments characterize PurR as a complex allosteric regulatory protein.  相似文献   

16.
The amino-terminal arms of dimeric Escherichia coli trp repressor were removed by chymotryptic cleavage of the first 6 residues from each subunit. The role of the arms in structure and function of the repressor was probed by comparing the properties of intact and proteolyzed forms. The armless protein retains the ability to form stable dimers and to bind the corepressor L-tryptophan, but its affinity for both operator and nonoperator DNA is reduced by about 50-fold. Footprinting analysis shows that the intact repressor makes contacts with nucleotides on only one face of operator DNA. Thus, the arms do not wrap around the DNA as is the case for several other DNA binding proteins. All the contact sites identified by footprinting using the intact repressor are preserved in the complex formed with the armless repressor. This result indicates that the arms do not occupy a unique position on the DNA although they contribute substantially to the energy of DNA binding.  相似文献   

17.
An analytical method for determining very high binding constants at equilibrium for reactions requiring an effector is proposed and applied to study the interaction of tetracycline with the repressor of the tetracycline resistance gene from Tn10. In this method complex formation is limited by low concentrations of the effector, which is Mg2+ for the interaction of tetracycline and Tet repressor. The binding of Mg2+ to tetracycline and subsequent formation of the ternary repressor-Mg(2+)-tetracycline complex are coupled reactions yielding a dependence of repressor-tetracycline-Mg2+ complex formation on the concentration of free Mg2+. The binding constants can be determined from the quantitative analysis of ternary complex formation with increasing Mg2+ concentrations. This method allows the determination of very high association constants at equilibrium in a large range of protein concentrations. In the case of repressor and tetracycline, the same affinity constant of 3 +/- 2 x 10(9) M-1 was found in the range of 0.1 to 5 microM of repressor. This result indicates that no association or dissociation of the repressor subunits occurs upon binding of tetracycline. Furthermore, the results show that a repressor dimer binds two effector molecules without significant cooperativity.  相似文献   

18.
The homodimeric cooperative hemoglobin from the mollusk Scapharca inaequivalvis displays an unusual subunit assembly with respect to vertebrate hemoglobins. The intersubunit contact region is formed by the two heme-carrying E and F helices, which bring the two hemes in contact with each other. At variance with tetrameric vertebrate hemoglobins, the ligand binding is not accompanied by a significant quaternary transition. The major ligand-linked changes are tertiary and are limited to the heme pocket and subunit interface. These unique structural features of HbI are not easily reconciled with the classical thermodynamic models used to describe cooperative ligand binding in vertebrate hemoglobins. The lack of distinct quaternary states and the absence of allosteric effectors suggested that cooperativity in HbI is entirely homotropic in origin. Thereafter, high resolution X-ray crystallographic data displayed the preferential binding of water molecules at the intersubunit interface in the unliganded protein with respect to the liganded one. These ordered water molecules were thus proposed to act as heterotropic effectors in HbI. The contribution of specific water binding to the observed cooperativity in HbI is discussed in the framework of the enthalpy-entropy compensation effect emerging from previous accurate equilibrium oxygen binding measurements.  相似文献   

19.
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.  相似文献   

20.
The regulation of the reporter gene activity in a single bacterial cell by means of lambda-phage C1 repressor has been described by the methods of statistical thermodynamics. The equations for calculation of the mean production rate of the reporter protein and its standard deviation as a function of C1 repressor concentration in the cell have been obtained. The stochastic nature of C1 repressor binding with OR1 and OR2 operator sites becomes apparent when both repressor molecules and operators are present in the bacterial cell in a small number of copies. In this case, the number of repressor molecules that bind to OR1 and OR2 sites fluctuates considerably. The in vitro binding of C1 repressor to OR1 and OR2 sites, their mutant forms, and nonspecific DNA regions has been well studied. Using the binding constants of in vitro binding of C1 repressor to OR1, OR2, and nonspecific DNA regions and also the value of the cooperativity parameter for C1 repressor binding to OR1 and OR2 sites, we calculated the mean rate of synthesis of the reporter protein and its standard deviation as a function of repressor concentration in the cell. The theoretical relations fit well the experimental results. The results of calculations confirm the assumption that gene expression noise in a single cell at a repressor concentration exceeding 100 nM is related to the stochastic nature of binding of repressor dimers to OR1 and OR2 sites. Other mechanisms of the generation of gene expression noise (for example, monomer-dimer balance) make a significant contribution at concentrations less than 100 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号