首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Filter feeding fishes possess several morphological adaptations necessary to capture and concentrate small particulate matter from the water column. Filter feeding teleosts typically employ elongated and tightly packed gill rakers with secondary bony or epithelial modifications that increase filtering efficiency. The gill rakers of Hypophthalmichthys molitrix, silver carp, are anatomically distinct from and more complex than the filtering apparatus of other teleostean fishes. The silver carp filtering apparatus is composed of biserial, fused filtering plates used to capture particles ranging in size from 4 to 80 μm. Early in ontogeny, at 15–25 mm standard length (SL), silver carp gill rakers are reminiscent of other more stereotypical teleostean rakers, characterized by individual lanceolate rakers that are tightly packed along the entirety of the branchial arches. At 30 mm SL, secondary epithelial projections and concomitant dermal ossification begin to stitch together individual gill rakers. During later juvenile stages, dermal bone further modifies the individual gill rakers and creates a bony scaffold that supports the now fully fused and porous epithelium. By adulthood, the stitching of bone and complete fusion of the overlying epithelium creates rigid filtering plates with morphologically distinct faces. The inner face of the plates is organized into a net‐like matrix while the outer face has a sponge‐like appearance comprised of differently sized pores. Here, we present morphological data from an ontogenetic series of the filtering apparatus within silver carp. These data inform hypotheses regarding both how these gill raker plates may have evolved from a more basal condition, as well as how this novel architecture allows this species to feed on exceedingly small phytoplankton, particles that represent a greater filtering challenge to the typical anatomy of the gill rakers of fishes.  相似文献   

2.
The surface ultrastructure of the gill arches and the gill rakers of an herbivorous fish, Cirrhinus mrigala was investigated by scanning electron microscopy. These structures show significant adaptive modifications associated with the food and feeding ecology of the fish. Closely lying short gill rakers and narrow inter-raker channels on the gill arches are associated to filter and retain food particles. Prominent epithelial protuberances on the gill rakers and the gill arches enable the taste buds, located at their summit, to project well above the surface of the epithelium. This could increase the efficiency of the taste buds in selective sorting of palatable food. Surface specializations of the postlingual organ are recognized adaptive modifications for selecting, trapping or holding food particles. Prominent molariform teeth born on the lower pharyngeal jaw, and the chewing pad opposite it, are associated to work together as an efficient pharyngeal mill. Mucous goblet cells are considered to elaborate mucus secretions to trap, glue and lubricate food particles for their smooth transport for swallowing.  相似文献   

3.
The innervation pattern of the respiratory gill arches of the carp (Cyprinus carpio) is described. The gill region is innervated by the branchial branches of the glossopharyngeal and vagal nerves. Each branchial nerve divides at the level of or just distal to the epibranchial ganglion into: 1) a pretrematic branch, 2) a dorsal pharyngeal branch, and 3) a posttrematic branch. The dorsal pharyngeal branch innervates the palatal organ in the roof of the buccal cavity. The pretrematic and posttrematic branches innervate the posterior and anterior halves, respectively, of the gill arches bordering a gill slit. Each branch splits into an internal and an external part. The internal bundle innervates the buccal side of the gill arch, including the gill rakers. The external bundle terminates in the gill filaments. The epibranchial motor branch, a small nerve bundle containing only motor fibers, circumvents the ganglion and anastomoses distally with the posttrematic branch. The detailed course and branching patterns of these branches are described.  相似文献   

4.
To better understand potential diet overlap among exotic Asian species of carp and native species of filter‐feeding fishes of the upper Mississippi River system, microscopy was used to document morphological differences in the gill rakers. Analysing samples first with light microscopy and subsequently with confocal microscopy, the three‐dimensional structure of gill rakers in Hypophthalmichthys molitrix, Hypophthalmichthys nobilis and Dorosoma cepedianum was more thoroughly described and illustrated than previous work with traditional microscopy techniques. The three‐dimensional structure of gill rakers in Ictiobus cyprinellus was described and illustrated for the first time.  相似文献   

5.
We have modeled steady, three-dimensional flow with a no-slip boundary condition in cylindrical and conical oral cavities possessing vertical or slanted branchial slits. These numerical simulations illustrate the transport of food particles toward the esophagus, as well as the velocity profiles of water exiting the oral cavity via the branchial slits. The maximum and average velocities are highest for flow exiting the most posterior branchial slit. The highest volume flow rates also occur in the most posterior slit for the cylindrical simulations, but occur in the most anterior slit for the conical simulations. Along the midline, there is a pronounced bilaterally symmetrical vortex in the posterodorsal region of the cylindrical and conical oral cavities and a second bilaterally symmetrical vortex in the posteroventral region of the cylinder. Particles entrained in the vortices will recirculate in the posterior oral cavity, increasing the probability of encounter with sticky, mucus-covered surfaces such as the oral roof, gill arches, or gill rakers. The posterodorsal vortex could serve to concentrate particles near the entrances of the epibranchial organs. The ventral vortex could be involved in sequestering dense inorganic particles that sink toward the floor of the oral cavity. All vortices are absent in the conical simulation with vertical branchial slits, indicating that the slanted branchial slits between the gill arches are responsible for the formation of the vortex in the conical oral cavity. Experiments using in vivo flow visualization techniques are needed to determine whether ram suspension feeders, pump suspension feeders, and non-suspension-feeding fishes possess vortices in the posterior oral cavity that contribute to particle transport, food particle encounter with sticky surfaces, and inorganic particle rejection.  相似文献   

6.
We study crossflow filtration mechanisms in suspension-feeding fishes using computational fluid dynamics to model fluid flow and food particle movement in the vicinity of the gill rakers. During industrial and biological crossflow filtration, particles are retained when they remain suspended in the mainstream flow traveling across the filter surface rather than traveling perpendicularly to the filter. Here we identify physical parameters and hydrodynamic processes that determine food particle movement and retention inside the fish oral cavity. We demonstrate how five variables affect flow patterns and particle trajectories: (1) flow speed inside the fish oral cavity, (2) incident angle of the flow approaching the filter, (3) dimensions of filter structures, (4) particle size, and (5) particle density. Our study indicates that empirical experiments are needed to quantify flow parameters inside the oral cavity, and morphological research is needed to quantify dimensions of the filter apparatus such as gill rakers, the gaps between rakers, and downstream barriers. Ecological studies on suspension-feeding fishes are also needed to quantify food particle size and density, as these variables can affect particle retention due to hydrodynamic processes during crossflow filtration.  相似文献   

7.
Synopsis The filter feeding organ of cyprinid fishes is the branchial sieve, which consists of a mesh formed by gill rakers and tiny channels on the gill arches. In order to establish its possible role during growth we measured the following morphological gill raker parameters over a range of sizes in three cyprinid fishes, bream, white bream and roach: inter raker distance, bony raker length, raker width, cushion length and channel width. At any given standard length common bream has the largest inter raker distance, roach the lowest and white bream is intermediate. In the comb model of filter feeding the inter raker distance is considered to be a direct measure of the mesh size and retention ability (= minimal size of prey that can be retained) of a filter. For the three species under study there is a conflict between the comb model and experimental data on particle retention. Lammens et al. (1987) found that common bream has a large retention ability whereas roach and white bream have a much smaller one. A new model, the channel model (Hoogenboezem et al. 1991) has been developed for common bream; in this model the lateral gill rakers can regulate the mesh size of the medial channels on the other side of the gill slit. The present data indicate that this model is not appropriate for white bream and roach. At any given standard length white bream and roach only reach 70% of the raker length of common bream, which means that in this model the gill slits should to be very narrow during filter feeding. The gill rakers consist of a bony raker and a fleshy cushion. The bony rakers have a rather long needle-like part outside the cushion in bream, but not in white bream and roach which have blunt gill rakers. Blunt gill rakers are not suited to reduce the diameter of the medial channels. The comb model seems more appropriate for white bream and roach, but doubts about the validity of this simple model remain. The sum of the areas of the medial channels is an approximation of the area through which water flows in the filter. This channel area therefore gives an impression of the capacity or flow rate of the filter. With this capacity estimation and an estimation of energy consumption we calculated an energy ratio of filter feeding. The energy ratio decreases with increasing standard length with an exponent close to the expected exponent of -0.40. The energy ratio is highest in bream, intermediate in white bream and lowest in roach.  相似文献   

8.
Synopsis We have quantitatively analyzed a videotape of Seriola dumerili (Carangidae) displaying ram suspension-feeding behavior and ram ventilation in the field. This is the first report of facultative suspension feeding by a piscivorous carangid. The intraoral morphology of S. dumerili is not typical of ram suspension-feeding fishes in that closely-spaced, long gill rakers are lacking. While the mechanism of particle retention is not known for any ram suspension-feeding fish species, scanning electron microscopy revealed denticles on the branchial surfaces of S. dumerili that could play a role in particle entrapment.  相似文献   

9.
Summary (1) Scanning electron microscopy and vascular casting were used to study the morphology and vascular anatomy of the fully developed internal gills of Litoria ewingii tadpoles. — (2) The four pairs of gills were located in two branchial baskets on either side of the heart. Each gill consisted of a branchial arch with gill tufts projecting ventrally and gill filters running dorsally. The gills bore a variable number of gill tufts in which a complex three-dimensional array of capillary loops, of varying lengths and diameters, was trailed in the path of the ventilatory current. — (3) The evidence presented in this paper suggests that the gill tufts have greater potential as gas exchangers than either the gill filters or skin. — (4) The study revealed structural and functional evidence for the existence of branchial shunts between afferent and efferent branchial arteries.  相似文献   

10.
Synopsis Suspension-feeding fishes use gill structures for both respiration (lamellae) and food capture (rakers). During hypoxic exposure in eutrophic lakes or poorly circulated sloughs, many fishes, including Sacramento blackfish, Orthodon microlepidotus, increase their gill water flows, in part by increasing ventilatory stroke volumes. Stroke volume increases could compromise particle sieving efficiency by spreading interdigitated gill rakers from adjacent gill arches, although blackfish capture food particles by raker-guided water flows to a sticky buccal root. Using van Dam-type respirometers, blackfish respiratory variables and feeding efficiency (Artemia nauplii) were measured under normoxia (> 130 torr PO2) and hypoxia (60 torr PO2). Compared with non-feeding, normoxic conditions, gill ventilation volume, frequency, stroke volume, and gape all increased, while O2 uptake efficiency decreased, during hypoxia and during feeding. O2 consumption increased during feeding treatments, and % uptake of nauplii showed no difference between normoxic and hypoxic groups. Thus, blackfish display respiratory adaptations, including increased ventilatory stroke volumes, to survive in hypoxic environments such as Clear Lake, California. Importantly, they have also evolved a particle capture mechanism that allows efficient suspension-feeding under both normoxic and hypoxic conditions.  相似文献   

11.
The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11–200 μm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 μm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51–70 μm in diameter and fewer 91–130 μm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.  相似文献   

12.
Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm‐water epi‐pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water–blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well‐oxygenated habitat relative to the two other Alopias species. In fast‐swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia‐dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. J. Morphol. 276:589–600, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Epibranchials are among the main dorsal elements of the gill basket in jawed vertebrates (Gnathostomata). Among extant fishes, chondrichthyans most resemble the putative ancestral condition as all branchial arches possess every serially homologous piece. In osteichthyans, a primitive rod-like epibranchial 5, articulated to ceratobranchial 5, is absent. Instead, epibranchial 5 of many actinopterygians is here identified as an accessory element attached to ceratobranchial 4. Differences in shape and attachment of epibranchial 5 in chondrichthyans and actinopterygians raised suspicions about their homology, prompting us to conduct a detailed study of the morphology and development of the branchial basket of three ostariophysans (Prochilodus argenteus, Characiformes; Lophiosilurus alexandri and Pseudoplatystoma corruscans, Siluriformes). Results were interpreted within a phylogenetic context of major gnathostome lineages. Developmental series strongly suggest that the so-called epibranchial 5 of actinopterygians does not belong to the epal series because it shares the same chondroblastic layer with ceratobranchial 4 and its ontogenetic emergence is considerably late. This neomorphic structure is called accessory element of ceratobranchial 4. Its distribution among gnathostomes indicates it is a teleost synapomorphy, occurring homoplastically in Polypteriformes, whereas the loss of the true epibranchial 5 is an osteichthyan synapomorphy. The origin of the accessory element of ceratobranchial 4 appears to have occurred twice in osteichthyans, but it may have a single origin; in this case, the accessory element of ceratobranchial 4 would represent a remnant of a series of elements distally attached to ceratobranchials 1–4, a condition totally or partially retained in basal actinopterygians. Situations wherein a structure is lost while a similar neomorphic element is present may lead to erroneous homology assessments; these can be avoided by detailed morphological and ontogenetic investigations interpreted in the light of well-supported phylogenetic hypotheses.  相似文献   

14.
The gadoid fishes Theragra finnmarchica from the coast of northern Norway and Theragra chalcogramma from the north‐east Pacific could not be taxonomically discriminated by sequencing the mitochondrial cytochrome c oxidase I (COI) gene. However, the taxa differed in 10 of 42 non‐osteological and in four of 17 osteological characters. Ontogenetic changes were found for 16 of the examined non‐osteological characters. Five taxon‐specific characters, unaffected by ontogenetic scaling, were examined by discriminant analysis. A 100% correct classification was obtained from a discriminant function based on number of pyloric caeca and number of gill rakers on the upper part of the gill arch. However, all examined characters overlapped between the two taxa, except the number of pyloric caeca. On the basis of their genetic similarity and slight morphological differences, T. finnmarchica should be considered a junior synonym of T. chalcogramma.  相似文献   

15.
The Neotropical armoured catfish Corydoras paleatus is a facultative air-breathing teleost commonly exported as ornamental fish. In this species, air breathing enables it to survive and inhabit freshwater environments with low oxygen levels. Therefore, it is important to analyse the gills from a morphological aspect and its dimensions in relation to body mass with reference to aquatic respiration. For that, the gills were analysed using a stereoscopic microscope for morphometric studies, and structural and ultrastructural studies were carried out to compare the four branchial arches. Furthermore, two immunohistochemical techniques were used to locate and identify the presence of a Na+/K+ pump. The characterization of the potential for cell proliferation of this organ was assessed using an anti-PCNA antibody. The results show that gills of C. paleatus present some characteristics related to its diet and lifestyle, such as the limited development of gill rakers and the abundance of taste buds. In addition, other special features associated with the environment and bimodal breathing were observed: scarce and absent mucous cells (MCs) in the gill filaments and branchial lamellae, respectively, and the localization of mitochondria-rich cells (MRCs) covering the basal third of the branchial lamellae, which reduces the gill respiratory area. A peculiar finding in the gill epithelium of this armoured catfish was the presence of mononuclear cells with sarcomeres similar to myoid cells, whose functional importance should be determined in future studies. Finally, in C. paleatus, the interlamellar space of gill filaments is an important site for cell turnover and ionoregulation; the latter function is also performed by the branchial lamellae.  相似文献   

16.
《Journal of morphology》2017,278(9):1220-1228
The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well‐preserved examples of pharyngeal skeletons from stem‐group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Early Devonian placoderm fish, Paraplesiobatis heinrichsi Broili, from Hunsrück Slate of Germany. Using synchrotron light tomography, we resolve and reconstruct the three‐dimensional gill arch architecture of Paraplesiobatis and compare it with other gnathostomes. The preserved pharyngeal skeleton comprises elements of the hyoid arch (probable ceratohyal) and a series of branchial arches. Limited resolution in the tomography scan causes some uncertainty in interpreting the exact number of arches preserved. However, at least four branchial arches are present. The final and penultimate arches are connected as in osteichthyans. A single median basihyal is present as in chondrichthyans. No dorsal (epibranchial or pharyngobranchial) elements are observed. The structure of the pharyngeal skeleton of Paraplesiobatis agrees well with Pseudopetalichthys from the same deposit, allowing an alternative interpretation of the latter taxon. The phylogenetic significance of Paraplesiobatis is considered. A median basihyal is likely an ancestral gnathostome character, probably with some connection to both the hyoid and the first branchial arch pair. Unpaired basibranchial bones may be independently derived in chondrichthyans and osteichthyans.  相似文献   

17.
Summary In order to understand the blood flow patterns and their regulation in the gills and pulmonary artery ofAmbystoma tigrinum, the vascular resistance and vasoactivity of the two major branchial perfusion pathways and a vascular plexus in the pulmonary artery were investigated using an isolated-tissue perfusion method. Acetylcholine and epinephrine were both pressor agents in all three vascular segments. Angiotensin II also constricted the branchial respiratory vasculature. Norephinephrine was primarily a vasodilator in the branchial respiratory vasculature, however, it had no effect on the shunt vessels of the gill or the pulmonary arterial plexus. Both gill circulations were insensitive to alterations in CO2 and pH. Anoxia produced a slight vasodilation of the branchial respiratory vessels but had no effect on the shunt vasculature. Mild hypoxia had no effect on either branchial circulations. The results suggest that: (1) blood flow through the respiratory section of the gill may vary between 8 and 47% of total gill flow, (2) the major perfusion pathway to the lung is probably from the efferent artery of the third gill through the ductus arteriosus and then into the pulmonary artery, (3) O2, CO2 and pH exert no local control of branchial perfusion, (4) both cholinergic and adrenergic regulation of branchial and proximal pulmonary arterial vascular resistance is possible, (5) a rise in circulating norepinephrine should increase blood flow to the respiratory section of the gill.Abbreviations AII angiotensin II - ACh acetylcholine - EPi epinephrine - NE norepinephrine  相似文献   

18.
The menhadens Brevoortia gunteri and B. patronus are sympatric and morphologically similar. The two species are planktophagous and exhibited significant ( P < 0·0001) food resource partitioning, with phytoplankton predominating in B. patronus stomachs and zooplankton in B. gunteri. The branchial apparatus of both species is of the typical alosine form. Brevoortia patronus has significantly more branchiospinules per mm (=19·47) and significantly longer gill rakers (=13·35 mm) than B. gunteri (=14·11, =12·01 mm respectively). B. patronus is characterized by a gill raker system forming a fine-meshed filter capable of retaining smaller food items. The results support the hypothesis that food resource partitioning is related to different morphological features of the branchial apparatus.  相似文献   

19.
Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake–stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake–stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake–stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton‐biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population‐assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake–stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.  相似文献   

20.
Only 4% of 600 particles slid on or adhered to buccopharyngeal surfaces of Oreochromis esculentus . Only a minute quantity of mucus was visible during feeding (0·6% of 68 224 video frames; 30 frames s–1), and very few particles were retained in this mucus. Filtration by mucus entrapment on the branchial arches is rejected as a mechanism of particle retention in this species. Since particles contacted the branchial arches infrequently, and the inter–raker spaces are too large to retain particles less than approximately 50 μm, sieving by gill rakers as a particle retention mechanism is rejected also. Unlike the suspension–feeding congener O. niloticus, O. esculentus does not use branchial arches to retain food particles by sieving or by mucus entrapment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号