首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four‐lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red‐brown in juveniles to vivid dark‐brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. J. Morphol. 277:196–203, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

3.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

4.
The developmental mechanisms of color patterns formation and its evolution remain unclear in reptilian sauropsids. We, therefore, studied the pigment cell mechanisms of stripe pattern formation during embryonic development of the snake Elaphe quadrivirgata. We identified 10 post‐ovipositional embryonic developmental stages based on external morphological characteristics. Examination for the temporal changes in differentiation, distribution, and density of pigment cells during embryonic development revealed that melanophores first appeared in myotome and body cavity but not in skin surface at Stage 5. Epidermal melanophores were first recognized at Stage 7, and dermal melanophores and iridophores appeared in Stage 9. Stripe pattern first appeared to establish at Stage 8 as a spatial density gradient of epidermal melanophores between the regions of future dark brown longitudinal stripes and light colored background. Our study, thus, provides a comprehensive pigment‐cell‐based understanding of stripe pattern formation during embryonic development. We briefly discuss the importance of the gene expression studies by considering the biologically relevant theoretical models with standard developmental staging for understanding reptilian color pattern evolution.  相似文献   

5.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

6.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

7.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机...  相似文献   

8.
The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain‐ and loss‐of‐function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltkmne, display ectopic iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltkmne allele carries a missense mutation in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic competition.  相似文献   

9.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

10.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

11.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

12.
Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post‐embryonic, peripheral nerve‐associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow‐orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.  相似文献   

13.
In addition to melanophores and xanthophores, there existed two types of iridophore in the dermis of the scalycheek damselfish, Pomacentrus lepidogenys. There are dendritic iridophores which reflect white light-rays by Tyndall scattering, and the round or somewhat ellipsoidal iridophores which reflect rays with a relatively narrow spectral peak from blue to green through the non-ideal thin-film interference. Most of the dendritic iridophores were covered with xanthophores and were situated over melanophores, thus constituting a kind of chromatophore unit which produces a yellow or yellowish-green color. The characteristic yellowish-green hue of the integument results from a compound effect of small contributions by more elementary colors. During color changes of the skin, the position of the spectral peak does not shift. Unlike the iridophores of the blue damselfish, both types of iridophore of the scalycheek damselfish were found to be inactive. It appears, therefore, that the aggregation and dispersion of pigment within the melanophores is the primary mechanism responsible for the changes in color of this species.  相似文献   

14.
This review describes pteridine biosynthesis and its relation to the differentiation of neural crest derivatives in zebrafish. During the embryonic development of these fish, neural crest precursor cells segregate into neural elements, ectomesenchymal cells and pigment cells; the latter then diversifying into melanophores, iridophores and xanthophores. The differentiation of neural cells, melanophores, and xanthophores is coupled closely with the onset of pteridine synthesis which starts from GTP and is regulated through the control of GTP cyclohydrolase I activity. De novo pteridine synthesis in embryos of this species increases during the first 72‐h postfertilization, producing H4biopterin, which serves as a cofactor for neurotransmitter synthesis in neural cells and for tyrosine production in melanophores. Thereafter, sepiapterin (6‐lactoyl‐7,8‐dihydropterin) accumulates as yellow pigment in xanthophores, together with 7‐oxobiopterin, isoxanthopterin and 2,4,7‐trioxopteridine. Sepiapterin is the key intermediate in the formation of 7‐oxopteridines, which depends on the availability of enzymes belonging to the xanthine oxidoreductase family. Expression of the GTP cyclohydrolase I gene (gch) is found in neural cells, in melanoblasts and in early xanthophores (xanthoblasts) of early zebrafish embryos but steeply declines in xanthophores by 42‐h postfertilization. The mechanism(s) whereby sepiapterin branches off from the GTP‐H4biopterin pathway is currently unknown and will require further study. The surge of interest in zebrafish as a model for vertebrate development and its amenability to genetic manipulation provide powerful tools for analysing the functional commitment of neural crest‐derived cells and the regulation of pteridine synthesis in mammals.  相似文献   

15.
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation.  相似文献   

16.
During larval development of Salamandra salamandra salamandra chromatophores organize to form the definitive pigment pattern constituted by a black background with yellow patches that are characterized by epidermal xanthophores and dermal iridophores. Simultaneously the dermis undergoes remodeling from the larval stage to that typical of the adult. In the present study we ultrastucturally and immunocytochemically examined skin fragments of S. s. salamandra larvae and juveniles in order to investigate the modalities of xanthophore migration and differentiation in the context of dermal remodeling from the larval to adult stage. Semithin and thin sections showed that the dermis in newly born larvae consists of a compact connective tissue (basement lamella), to which fibroblasts and xanthophores adhere, and of a loose deep collagen layer. As larval development proceeds, fibroblasts and xanthophores invade the basement lamella, skin glands develop and the adult dermis forms. At metamorphosis, xanthophores reach the epidermis crossing through the basal lamina. We examined immunocytochemically the expression of signal molecules, such as fibronectin, vitronectin, beta1-integrin, chondroitin sulfate, E-cadherin, N-cadherin and plasminogen activator, which are known to be involved in regulating morphogenetic events. Their role in dermal remodeling and in pigment pattern formation is discussed.  相似文献   

17.
Alibardi, L. 2011. Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. —Acta Zoologica (Stockholm) 00 :1–11. The cytology and distribution of chromatophores responsible for skin pigmentation in chelonians is analyzed. Epidermal melanocytes are involved in the formation of dark spots or stripes in growing shelled and non‐shelled skin. Melanocytes rest in the basal layer of the epidermis and transfer melanosomes into keratinocytes during epidermal growth. Dermal melanophores and other chromatophores instead remain in the dermis and form the gray background of the skin. When dermal melanophores condense, they give origin to the dense spots or stripes in areas where no epidermal melanocytes are present. In the latter case, the epidermis and the corneous layer are transparent and reveal the dermal distribution of melanophores and other chromatophores underneath. As a result of this basic process of distribution of pigment cells, the dark areas visible in scales can have a double origin (epidermal and dermal) or a single origin (epidermal or dermal). Xanthophores, lipophores, and a cell containing both pterinosomes and lipid droplets are sparse in the loose dermis while iridophores are rarely seen in the skin of chelonians analyzed in the present study. Xanthophores and lipophores contribute to form the pale, yellow or oranges hues present among the dark areas of the skin in turtles.  相似文献   

18.
The dermal chromatophore unit   总被引:3,自引:3,他引:0       下载免费PDF全文
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.  相似文献   

19.
Sexual selection is one of the main processes involved in the emergence and maintenance of heritable color polymorphisms in a variety of taxa. Here, we test whether the intensity of sexual selection, estimated from population sex ratio, predicts morph diversity in Podarcis muralis, a color polymorphic lizard with discrete white, yellow, orange, white‐orange, and yellow‐orange male and female phenotypes (i.e., morphs). In a sample of 116 Pyrenean populations and 5421 lizards, sex ratios (m/f) vary from 0.29 to 2.5, with the number of morphs for each sex ranging from 2 to 5. Male‐biased sex ratios are associated with increased morph diversity as measured with Shannon's diversity index. The main factor accounting for this relationship is male morph richness (i.e., the number of morphs). In contrast, female morph diversity is not related to sex ratio. These results suggest a relationship between the intensity of male intrasexual competition and male morph diversity. While other selective forces may interact with sexual selection in maintaining the color polymorphisms in P. muralis, this evidence suggests a complex evolutionary scenario possibly involving frequency‐dependent selection of alternative reproductive tactics and/or complex balancing selection.  相似文献   

20.
Alibardi L. 2011. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. —Acta Zoologica (Stockholm) 92 : 187–200. The present morphological study describes the color of hatchling, juvenile, and adult crocodilian skin and the origin of its pigmentation. In situ hybridization and immunostaining indicate that crocodilian scales grow as an expansion of the proliferating epidermis of the hinge region that form thin lateral rings. In more central areas of growing scales, new epidermal layers contribute to increase the thickness of the stratum corneum. The dark pigmentation and color pattern derive from the different distribution of epidermal and dermal chromatophores. The more intensely pigmented stripes, irregular patches and dot‐like spots, especially numerous in dorsal scales, derive from the incorporation of the eumelanosomes of epidermal melanocytes in differentiating beta cells of the epidermis. Dermal melanophores, mainly localized in the loose upper part of the dermis, also contribute to the formation of the dark or gray background of crocodilian scales. The eumelanosomes of dermal melanophores determine the darkening of the skin pattern in association with the epidermal melanocytes. Iridophores are infrequent, while xantophores are present in the species analyzed with a sparse distribution in the superficial dermis among melanophores. The presence of xantophores and of the few iridophores in areas where epidermal melanocytes are absent appear to determine the brown or the light yellow‐orange background observed among the darker regions of crocodilian scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号