首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Rorqual whales (Family: Balaenopteridae) are the world's largest predators and sometimes feed near or at the sea surface on small schooling prey. Most rorquals capture prey using a behavioral process known as lunge‐feeding that, when occurring at the surface, often exposes the mouth and head above the water. New technology has recently improved historical misconceptions about the natural variation in rorqual lunge‐feeding behavior yet missing from the literature is a dedicated study of the identification, use, and evolution of these behaviors when used to capture prey at the surface. Here we present results from a long‐term investigation of three rorqual whale species (minke whale, Balaenoptera acutorostrata; fin whale, B. physalus; and blue whale, B. musculus) that helped us develop a standardized classification system of surface lunge‐feeding (SLF) behaviors. We then tested for differences in frequency of these behaviors among the three species and across all rorqual species. Our results: (1) propose a unified classification system of six homologous SLF behaviors used by all living rorqual whale species; (2) demonstrate statistically significant differences in the frequency of each behavior by minke, fin, and blue whales; and (3) provide new information regarding the evolution of lunge‐feeding behaviors among rorqual whales.  相似文献   

2.
    
Humpback whales (Megaptera novaeangliae) belong to the class of marine mammals known as rorquals that feed through extraordinarily energetic lunges during which they engulf large volumes of water equal to as much as 70% of their body mass. To understand the kinematics of humpback lunge feeding, we attached high‐resolution digital recording tags incorporating accelerometers, magnetometers, pressure and sound recording to whales feeding on euphausiids in fjords of the West Antarctic Peninsula. Instances of near vertical lunges gave us the unique opportunity to use the signal from the accelerometer to obtain a fine scale record of the body accelerations involved in lunging. We found that lunges contain extreme accelerations reaching 2.5 m/s2 in certain instances, which are then followed by decelerations. When animals are intensively feeding the inter‐lunge interval is similar for both deep and shallow lunges suggesting a biomechanical constraint on lunges. However, the number of lunges per dive varies from one for shallow feeding (<25 m) to a median of six for deeper dives. Different feeding patterns were evident in the kinematic record, for deep and shallow feeding bouts with the much greater mean turn rates occurring in shallow feeding.  相似文献   

3.
4.
Humpback whales (Megaptera novaeangliae) exhibit a variety of foraging behaviours, but neither they nor any baleen whale are known to produce broadband clicks in association with feeding, as do many odontocetes. We recorded underwater behaviour of humpback whales in a northwest Atlantic feeding area using suction-cup attached, multi-sensor, acoustic tags (DTAGs). Here we describe the first recordings of click production associated with underwater lunges from baleen whales. Recordings of over 34000 'megapclicks' from two whales indicated relatively low received levels at the tag (between 143 and 154dB re 1 microPa pp), most energy below 2kHz, and interclick intervals often decreasing towards the end of click trains to form a buzz. All clicks were recorded during night-time hours. Sharp body rolls also occurred at the end of click bouts containing buzzes, suggesting feeding events. This acoustic behaviour seems to form part of a night-time feeding tactic for humpbacks and also expands the known acoustic repertoire of baleen whales in general.  相似文献   

5.
    
Marine mammal social interactions are poorly understood primarily because of the difficulty of observing these behaviors in the wild. Observations of copulations in North Atlantic right whale surface active groups (SAGs) have led to the hypothesis that the function of these groups is for conception. The occurrence and composition of SAGs sighted from 1992 to 2001 were investigated on the basis of age, sex, and reproductive status of individuals. A total of 918 SAG events were documented. SAGs were observed in all habitat areas and in all months in which right whales were sighted. Group compositions revealed both potentially conceptive groups and nonconceptive groups. Of right whales whose age was known, 93% were first sighted in SAGs as juveniles, and more than half of all observed groups contained at least one juvenile whale. The group composition and timing of occurrence of SAGs do not support the hypothesis that all groups serve a purely conceptive function. Their functional role is likely much broader. Other potential functions include play, mating practice, or maintenance of social bonds.  相似文献   

6.
    
The rise of inexpensive, user‐friendly cameras and editing software promises to revolutionize data collection with minimal disturbance to marine mammals. Video sequences recorded by aerial drones and GoPro cameras provided close‐up views and unique perspectives of humpback whales engulfing juvenile salmon at or just below the water surface in Southeast Alaska and Prince William Sound. Although humpback feeding is famous for its flexibility, several stereotyped events were noted in the 47 lunges we analyzed. Engulfment was rapid (mean 2.07 s), and the entrance through which the tongue inverts into the ventral pouch was seen as water rushes in. Cranial elevation was a major contributor to gape, and pouch contraction sometimes began before full gape closure, with reverberating waves indicating rebounding flow of water within the expanded pouch. Expulsion of filtered water began with a small splash at the anterior of the mouth, followed by sustained excurrent flow in the mouth's central or posterior regions. Apart from a splash of rebounding water, water within the mouth was surprisingly turbulence‐free during engulfment, but submersion of the whale's head created visible surface whirlpools and vortices which may aggregate prey for subsequent engulfment.  相似文献   

7.
  总被引:3,自引:0,他引:3  
  相似文献   

8.
9.
    
Isotopic analyses of the incrementally growing baleen in Mysticeti have been used to learn about their feeding and movement patterns. Using methods previously applied to Pacific minke whales, stable δ15N and δ13C isotope values were measured along the baleen plates of male and female minke whales from two locations in the Northeast Atlantic. The sample sizes used in this study are comparable to those previously used in the literature, and, although limited in size, the evidence suggests differences in isotopic signatures between whales caught at different locations. Both the δ15N and δ13C data suggest whales at the higher latitude site of Svalbard have a narrower diet than the whales from Lofoten/Vesterålen in Norway. Across all whales, the δ15N data indicate the whales primarily prey on fish for much of the year, only switching to zooplankton during the spring bloom. The δ13C data fail to confirm whether the whales migrate over long distances.  相似文献   

10.
    
Skeletal remains of baleen whales killed during the onset of 20th century commercial whaling lie scattered across the shores and abandoned whaling stations of the subantarctic island of South Georgia. Here we report on genetic species identification of whale bones collected from South Georgia using standard historical DNA protocols. We amplified and sequenced short fragments of the mitochondrial DNA (mtDNA) control region from 281 available bone samples. Of these, 231 provided mtDNA sequences of sufficient quality and length (174–194 bp) for species identification: 158 bones were identified as humpback whale (Megaptera novaeangliae), 51 bones were identified as fin whale (Balaenoptera physalus), 18 bones were identified as blue whale (B. musculus), two bones were identified as sei whale (B. borealis), one bone was identified as a southern right whale (Eubalaena australis), and one bone was identified as a southern elephant seal (Mirounga leonina). The prominence of humpback, fin, and blue whale bones in the sample collection corresponds to the catch record of the early years of whaling on the island of South Georgia (pre‐1915), prior to the depletion of these populations.  相似文献   

11.
    
The surface active group (SAG) is the most obvious social interaction of the North Atlantic right whale ( Eubalaena glacialis ). SAGs are typically composed of an adult female with two or more males engaged in social behavior near the surface. Distinct calls, believed to be produced by the female, are associated with these groups. Calls recorded from three North Atlantic right whale SAGs and three South Atlantic right whale ( Eubalaena australis ) SAGs were played back to North Atlantic right whales to determine if these sounds are sufficient to attract males to the groups. Playbacks of gunshot sounds produced by North Atlantic right whales were used as a control stimulus. Thirty-six trials were carried out from 1999 to 2001 in the Bay of Fundy, Canada. Whales approached 27 of 31 SAG playbacks and 0 of 5 gunshot playbacks. Where sex was determined ( n = 28), all approaches to North Atlantic SAG recordings were by males. Individuals ( n = 22) of all age and sex classes approached South Atlantic SAG playbacks. These trials indicate that SAG calls from both populations are sufficient to attract right whales to SAGs and that males and females respond differently to stimuli from the North Atlantic. The difference in response to North and South Atlantic SAG stimuli was unexpected. Novelty, species differences in calls, and different seasonal or behavioral context for the recorded stimuli may be responsible for the differences in response.  相似文献   

12.
Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann''s two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.  相似文献   

13.
    
《Current biology : CB》2022,32(4):898-903.e1
  相似文献   

14.
15.
    
The introduction of animal‐borne, multisensor tags has opened up many opportunities for ecological research, making previously inaccessible species and behaviors observable. The advancement of tag technology and the increasingly widespread use of bio‐logging tags are leading to large volumes of sometimes extremely detailed data. With the increasing quantity and duration of tag deployments, a set of tools needs to be developed to aid in facilitating and standardizing the analysis of movement sensor data. Here, we developed an observation‐based decision tree method to detect feeding events in data from multisensor movement tags attached to fin whales (Balaenoptera physalus). Fin whales exhibit an energetically costly and kinematically complex foraging behavior called lunge feeding, an intermittent ram filtration mechanism. Using this automated system, we identified feeding lunges in 19 fin whales tagged with multisensor tags, during a total of over 100 h of continuously sampled data. Using movement sensor and hydrophone data, the automated lunge detector correctly identified an average of 92.8% of all lunges, with a false‐positive rate of 9.5%. The strong performance of our automated feeding detector demonstrates an effective, straightforward method of activity identification in animal‐borne movement tag data. Our method employs a detection algorithm that utilizes a hierarchy of simple thresholds based on knowledge of observed features of feeding behavior, a technique that is readily modifiable to fit a variety of species and behaviors. Using automated methods to detect behavioral events in tag records will significantly decrease data analysis time and aid in standardizing analysis methods, crucial objectives with the rapidly increasing quantity and variety of on‐animal tag data. Furthermore, our results have implications for next‐generation tag design, especially long‐term tags that can be outfitted with on‐board processing algorithms that automatically detect kinematic events and transmit ethograms via acoustic or satellite telemetry.  相似文献   

16.
17.
    
Collection of minimally invasive biopsy samples has become an important method to establish normal stable isotopes reference ranges in various wildlife species. Baseline data enhance the understanding of feeding ecology, habitat use, and potential food limitation in apparently healthy, free‐ranging cetaceans. Epidermis and muscle were collected from subsistence‐hunted northern Alaskan bowhead (n= 133 epidermis/134 muscle) and beluga whales (n= 42/49) and subsistence‐hunted Russian gray whales (n= 25/17). Additional samples were obtained from gray whales stranded in California (n= 18/11) during mortality events (1999, 2000). Both δ15N and δ13C are trophic position and benthic/pelagic feeding indicators, respectively, in muscle and epidermis. Epidermis is generally enriched in 15N over muscle, while epidermal 13C is more depleted. Lipid extraction does not alter δ15N in either tissue, but affects epidermal δ13C. Nitrogen‐15 is enriched in muscle, but not epidermis of stranded compared to subsistence‐hunted gray whales, indicating probable protein catabolism and nutritional stress in stranded whales. Similarly, epidermal δ13C of harvested whales is lower than in stranded whales, suggesting depleted lipid stores and/or food limitation in stranded animals. Epidermal isotope signatures are similar in both present‐day bowheads and in an ancient sample from the Northern Bering Sea region. Although only one specimen, this suggests trophic level of the ancient whale compares to modern bowheads after a millennium.  相似文献   

18.
Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators.  相似文献   

19.
Abstract: Vocalizations were recorded from a captive juvenile Bryde's whale, Balaenoptera edeni , that stranded off the gulf coast of Florida (Pinellas Co.) and was held at Sea World of Florida. The most common vocalization was a pulsed moan with durations of 0.5–51 set and acoustic energy from 200–900 Ht. Although these sounds are unlike any reported previously from this species, there are similarities to moans recorded opportunistically during a feeding study of free-ranging B. edeni in the Gulf of California (GOC). The pulsed moans recorded from Bryde's whale adults in the GOC were shorter in duration (0.7–1.4 set) than those recorded from the captive juvenile, but the frequencies were similar (165–875 Hz). In addition, a series of discrete, regularly spaced pulses (interpulse interval = 0.5–1.0 set, 700–950 Hz) were recorded only in the presence of Bryde's whale calves in the GOC.
Pulse rates produced by the captive juvenile (20–70 pulses/set) were intermediate between those recorded in the presence of GOC adults (60–130/sec) and calves (10–20/set). With these limited data it is not possible to determine to what extent the intermediate qualities of the juvenile call reflect maturational differences in the sound production apparatus, a phase of learning to vocalize like an adult, or the characteristics of a context-dependent call not recorded in the GOC.  相似文献   

20.
    
The movement of marine animals feeding at the sea surface is restricted by wave drag and a reduction in propulsive efficiency. Many rorqual whale species lunge feed at the surface, yet existing methodologies for detecting lunges in accelerometer data have not been applied to surface‐feeding behavior. Our study aimed to develop a method to detect surface‐feeding behavior in accelerometer data and in doing so, determine whether wave drag influences the detection of surface‐feeding behavior. A new acceleration parameter is described that considers the forward acceleration of the animal relative to its pitch. The new parameter, along with information on the deceleration and pitch angle, was then used in an automatic lunge detecting algorithm followed by a visual classification method that detected approximately 70% of the lunges observed during focal follow sampling. The forward acceleration of lunges decreased significantly with increasing proximity to the surface. This lower acceleration at the surface may influence the ability to detect lunge feeding behavior close to the surface. Future research should attempt to determine the cause of this relationship, which may be the influence of changes in the forces acting on the whale or behavioral flexibility by the whale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号