首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the literature, there are no available data on how anti‐DNA antibodies recognize DNA. In the present work, to study the molecular mechanism of DNA recognition by antibodies, we have used anti‐DNA IgGs from blood sera of patients with multiple sclerosis. A stepwise increase in ligand complexity approach was used to estimate the relative contributions of virtually every nucleotide unit of different single‐ (ss) and double‐stranded (ds) oligonucleotides to their affinity for IgG fraction having high affinity to DNA‐cellulose. DNA‐binding site disposed on the heavy chain demonstrates higher affinity to different dNMPs (Kd = 0.63μM‐3.8μM) than the site located on the light chain (28μM‐170μM). The heavy and light chains interact independently forming relatively strong contacts with 2 to 4 nucleotides of short homo‐ and hetero‐d(pN)2‐9. Then the increase in the affinity of different d(pN)n became minimal, and at n ≥ 8 to 9, all dependencies reached plateaus: approximately 3.2nM to 20nM and approximately 200nM to 460nM for the heavy and light chains, respectively. A similar situation was observed for different ribooligonucleotides, in which their affinity is 6‐fold to 100‐fold lower than that for d(pN)n. Transition from ss to ds d(pN)n leads to a moderate increase in affinity of ligands to DNA‐binding site of heavy chains, while light chains demonstrate the same affinity for ss and ds d(pN)n. Long supercoiled DNA interacts with both heavy and light chains with affinity of approximately 10‐fold higher than that for short oligonucleotides. The thermodynamic models were constructed to describe the interactions of IgGs light and heavy chains with DNA.  相似文献   

2.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
The synthetic peptide TPLVTLFK corresponding to the sequence 12–19 of β‐endorphin (referred to as octarphin) was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from the rat brain cortex (Kd = 2.6 ± 0.2 nM ). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but also to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin, as well. The [3H]octarphin specific binding with brain membranes was inhibited by unlabeled β‐endorphin (Ki = 2.4 ± 0.2 nM ) and a selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin SLTCLVKGFY (Ki = 2.9 ± 0.2 nM ). At the same time, unlabeled octarphin completely (by 100%) inhibited the specific binding of [3H]immunorphin with membranes (Ki = 2.8 ± 0.2 nM ). Thus, octarphin binds with a high affinity and specificity to nonopioid receptor of β‐endorphin on rat brain cortex membranes. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

5.
High‐affinity phosphate transporters mediate uptake of inorganic phosphate (Pi) from soil solution under low Pi conditions. The electrophysiological properties of any plant high‐affinity Pi transporter have not been described yet. Here, we report the detailed characterization of electrophysiological properties of the barley Pi transporter, HvPHT1;1 in Xenopus laevis oocytes. A very low Km value (1.9 µm ) for phosphate transport was observed in HvPHT1;1, which falls within the concentration range observed for barley roots. Inward currents at negative membrane potentials were identified as nH+:Pi (n > 1) co‐transport based on simultaneous Pi radiotracer uptake, oocyte voltage clamping and pH dependence. HvPHT1;1 showed preferential selectivity for Pi and arsenate, but no transport of the other oxyanions SO42? and NO3. In addition, HvPHT1;1 locates to the plasma membrane when expressed in onion (Allium cepa L.) epidermal cells, and is highly expressed in root segments with dense hairs. The electrophysiological properties, plasma membrane localization and cell‐specific expression pattern of HvPHT1;1 support its role in the uptake of Pi under low Pi conditions.  相似文献   

6.
A simple polyether‐tethered pyrrole‐polyamide dimer 1 was synthesized in 50% yield from the reaction of 2,2,2‐trichloro‐1‐(1‐methyl‐4‐nitro‐1H‐pyrrol‐2‐yl)ethanone with 2,2′‐[1,2‐ethanediylbis(oxy)]bisethanamine, and fully characterized on the basis of 1H‐ and 13C‐NMR, MS, HR‐MS, and IR data. Agarose gel‐electrophoresis study of the cleavage of plasmid pBR322 DNA by the complexes of compound 1 with seven metal ions indicated that most of the metal complexes were capable of efficiently cleaving DNA at pH 7.0 and 37°. Among them, the CuII complex exhibited the highest activity, with the maximal catalytic rate constant kmax and Michaelis constant KM being 5.61 h?1 and 7.30 mM , respectively. Spectroscopic, ESI‐MS, ethidium‐bromide (EB) displacement, and viscosity experiments indicated that compound 1 could form a 1 : 1 complex with CuII ion, and that this complex showed moderate binding affinity toward calf‐thymus DNA.  相似文献   

7.
8.
The interaction of paylean (PL) with calf thymus DNA (ctDNA) was investigated using fluorescence spectroscopy, UV absorption, melting studies, ionic strength, viscosity experiments and molecular docking under simulated physiological conditions. Values for the binding constant Ka between PL and DNA were 5.11 × 103, 2.74 × 103 and 1.74 × 103 L mol–1 at 19, 29 and 39°C respectively. DNA quenched the intrinsic fluorescence of PL via a static quenching procedure as shown from Stern–Volmer plots. The relative viscosity and the melting temperature of DNA were basically unchanged in the presence of PL. The fluorescence intensity of PL–DNA decreased with increasing ionic strength. The value of Ka for PL with double‐stranded DNA (dsDNA) was larger than that for PL with single‐stranded DNA (ssDNA). All the results revealed that the binding mode was groove binding, and molecular docking further indicated that PL was preferentially bonded to A–T‐rich regions of DNA. The values for ΔH, ΔS and ΔG suggested that van der Waals forces or hydrogen bonding might be the main acting forces between PL and DNA. The binding distance was determined to be 3.37 nm based on the theory of Förster energy transference, which indicated that a non‐radiation energy transfer process occurred. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Adiponectin is secreted from adipose tissue and functions as a protein hormone in regulating glucose metabolism and fatty acid catabolism. Adiponectin plays an important role as a novel risk factor and potential diagnostic and prognostic biomarker in cancer. Crystal structures of globular adiponectin have been resolved with three calcium‐binding sites on the top of its central tunnel. However, the calcium‐binding property of adiponectin remains elusive. Mouse globular adiponectin was cloned into pET11a and expressed in Escherichia coli. The folding of adiponectin was indicated by the spread of resonances in HSQC spectrum. Luminescence resonance energy transfer was used to obtain the binding constant (Kd) of Tb3+ and the inhibitor constant (Ki) of Ca2+ for globular adiponectin. The obtained calcium‐binding affinity to adiponectin is relatively low (~2 mM), which indicates that the high concentration of adiponectin in circulating system may function as calcium storage bank and buffer the free calcium concentration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

11.
Amino acid influx across the brush border membrane of the intact pig ileal epithelium was studied. It was examine whether in addition to system B, systems ASC and bo,+ were involved in transport of bipolar amino acids. The kinetics of interactions between lysine and leucine demonstrates that system bo,+ is present and accessible also to -glutamine. -aspartate (K1/2 0.3 mM) and -glutamate (Ki 0.5 mM) share a high affinity transporter with a maximum rate of 1.3 μmol cm−2 h−1, while only -glutamate with a K1/2 of 14.4 mM uses a low affinity transporter with a maximum rate of 2.7 μmol cm−2 h−1, system ASC, against which serine has a Ki of 1.6 mM. In the presence of 100 mM lysine, -glutamine (A), leucine (B), and methionine (C) fulfilled the criteria of the ABC test for transport by one and the same transporter. However, serine inhibits not only transport of -glutamate but also of glutamine (Ki 0.5 mM), and -glutamate inhibits part of the transport of glutamine. The test does, therefore, only indicate that the three bipolar amino acids have similar affinities for transport by systems B and ASC. Further study of the function of system B must be carried out under full inhibition by lysine and glutamate.  相似文献   

12.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

13.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

14.
The interaction of human 8-oxoguanine (8-oxoG) DNA glycosylase (hOGG1) with single-and double-stranded oligodeoxyribonucleotides (ODNs) was studied by a method of stepwise increase in ligand complexity. ODNs were shown to act as competitive inhibitors with respect to the substrate of the reaction catalyzed by hOGG1. K I was estimated for various homo-and hetero-ODNs. All nucleotides covered by the enzyme globule proved to additively interact with hOGG1. An increase in the ODN size n by one nucleotide or base pair in d(pN)n and their duplexes monotonically increased their affinity for hOGG1 by a factor of 1.4–1.5 until n = 10, mostly due to weak nonspecific additive contacts between hOGG1 and the sugar-phosphate backbone. Weak nonspecific additive interactions contributed about five orders of magnitude to the total affinity of hOGG1 for specific DNA (K d ~ 10?5 M). Specific 8-oxoG increased the affinity of DNA for the enzyme by three orders of magnitude (K d ~ 10?8 M). The main features of the recognition of specific DNA by hOGG1 were analyzed.  相似文献   

15.
Every method used to quantify biomolecular interactions has its own strengths and limitations. To quantify protein‐DNA binding affinities, nitrocellulose filter binding assays with 32P‐labeled DNA quantify Kd values from 10?12 to 10?8 M but have several technical limitations. Here, we considered the suitability of biolayer interferometry (BLI), which monitors association and dissociation of a soluble macromolecule to an immobilized species; the ratio koff/kon determines Kd. However, for lactose repressor protein (LacI) and an engineered repressor protein (“LLhF”) binding immobilized DNA, complicated kinetic curves precluded this analysis. Thus, we determined whether the amplitude of the BLI signal at equilibrium related linearly to the fraction of protein bound to DNA. A key question was the effective concentration of immobilized DNA. Equilibrium titration experiments with DNA concentrations below Kd (equilibrium binding regime) must be analyzed differently than those with DNA near or above Kd (stoichiometric binding regime). For ForteBio streptavidin tips, the most frequent effective DNA concentration was ~2 × 10?9 M. Although variation occurred among different lots of sensor tips, binding events with Kd ≥ 10?8 M should reliably be in the equilibrium binding regime. We also observed effects from multi‐valent interactions: Tetrameric LacI bound two immobilized DNAs whereas dimeric LLhF did not. We next used BLI to quantify the amount of inducer sugars required to allosterically diminish protein‐DNA binding and to assess the affinity of fructose‐1‐kinase for the DNA‐LLhF complex. Overall, when experimental design corresponded with appropriate data interpretation, BLI was convenient and reliable for monitoring equilibrium titrations and thereby quantifying a variety of binding interactions.  相似文献   

16.
A series of [(phenylpiperazinyl)alkyl]‐isoindole‐1,3‐dione derivatives was synthesized to serve as probes for dopaminergic receptors. Among this series, compound 6a showed the highest affinity towards D4 and D3 receptors with Ki values in the low nanomolar range, and D2/D4‐ and D2/D3‐selectivity indices of 72 and 20, respectively. Optimization rounds were adopted and led to the D4‐selective ligand thiophene‐2‐carboxamide 9a with a Ki(D4) value of 0.62 nM , and to its butyl analog, 10a , with Ki(D4) and Ki(D3) values of 0.03 and 0.26 nM , respectively. Docking experiments revealed the importance of the unique D4 residue Arg186 in manipulating the ligands' D4‐subtype‐receptor selectivity.  相似文献   

17.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

18.
The effects of extracellular Pi and Na+ on cellular Pi concentration and transport were studied. Steady-state Pi exchange flux was measured by 32P uptake in the presence and absence of Na+. Model experiments were also conducted to assess the possibility that hydrolysis of organic phosphate esters contributes to the chemically measured intracellular Pi concentration of Ehrlich ascites tumor cells. The results of these experiments indicate that hydroloysis of labile organic phosphate esters does not contribute to the measured intracellular pool of Pi. The Pi transport system exhibits an apparent Ks of 0.115 mM Pi and a maximal flux of 1.73 mmole min?1 (kg dry wt)?1. When incubated in a phosphate-buffered choline chloride medium (5 mM Pi) the intracellular Pi and the Pi influx fall by 65 and 88%, respectively. At 5 mM extracellular Pi, the Na+-dependent component of Pi transport fits Michaelis-Menten kinetics with the maximal flux equal to 2.46 mmole min?1 (kg dry wt)?1 and an apparent Ks of 35.4 mM Na+. In addition, a Na+-independent component of Pi transport, comprising about 12% of the total Pi flux, was identified. The data support the hypothesis that a Pi transport system, dependent on Na+, plays a principal role in the maintenance of intracellular Pi concentration.  相似文献   

19.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

20.
Shima S  Ataka K 《FEBS letters》2011,(2):353-356
[Fe]-Hydrogenase catalyzes the reversible activation of H2. CO and CN inhibit this enzyme with low affinity (Ki ≅ 0.1 mM) by binding to the iron site of the bound iron-guanyrylpyridinol cofactor. We report here that isocyanides, which are formally isoelectronic with CO and CN, strongly inhibit [Fe]-hydrogenase (Ki as low as 1 nM). The [NiFe]- and [FeFe]-hydrogenases tested were not inhibited by isocyanides. UV–Vis and infrared spectra revealed that the isocyanides bind to the iron center of [Fe]-hydrogenase. The inhibition kinetics are in agreement with the proposed catalytic mechanism, including the open/closed conformational change of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号