首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe several novel morphological features in the nasal region of the hammerhead shark Sphyrna tudes. Unlike the open, rounded incurrent nostril of non-hammerhead shark species, the incurrent nostril of S. tudes is a thin keyhole-like aperture. We discovered a groove running anterior and parallel to the incurrent nostril. This groove, dubbed the minor nasal groove to distinguish it from the larger, previously described, (major) nasal groove, is common to all eight hammerhead species. Using life-sized plastic models generated at 200 μm resolution from an X-ray scan, we also investigated flow in the nasal region. Even modest oncoming flow speeds stimulate extensive, but not complete, circulation within the model olfactory chamber, with flow passing through the two main olfactory channels. Flow crossed from one channel to another via a gap in the olfactory array, sometimes guided by the interlamellar channels. Major and minor nasal grooves, as well as directing flow into the olfactory chamber, can, in conjunction with the nasal bridge separating incurrent and excurrent nostrils, limit flow passing into the olfactory chamber, possibly to protect the delicate nasal structures. This is the first simulation of internal flow within the olfactory chamber of a shark.  相似文献   

2.
The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area.  相似文献   

3.
This first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with olfactory sensory neurons distributed widely throughout the olfactory chamber. The spatial organization of the nasal cavity in the bottom-dwelling round goby (Gobiidae, Neogobius melanostomus) was examined using impression material injection, immunocytochemistry, and transmission electron microscopy. The olfactory chamber contains a single olfactory lamella; prominent dorsocaudal lachrymal and ethmoidal accessory nasal sacs are situated ventrocaudal to the chamber. The location of the olfactory mucosa within the olfactory chamber is novel for teleost fish, as it extends beyond the ventral surface to the lateral and dorsal regions. Microvillar olfactory sensory neurons and ciliated olfactory sensory neurons were identified by transmission electron microscopy and the spatial distribution of these two cell types was assessed through immunocytochemistry against olfactory receptor coupled G-proteins. Both G(alphaolf)-immunoreactive ciliated olfactory sensory neurons and the G(alphao)-immunoreactive microvillar form were located throughout the olfactory epithelium. Ciliated crypt cells were G(alphao) immunoreactive and were found throughout the olfactory epithelium of some specimens. The widespread occurrence of olfactory sensory neurons in the olfactory chamber supports the idea that olfactory signaling is important to the survival of the round goby. The prominence of the lachrymal and ethmoidal accessory nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory surface of the olfactory sensory neurons, possibly through a pump-like mechanism driven by opercular activity associated with gill ventilation.  相似文献   

4.
Summary A comparison of the necklaces of sensory olfactory, and non-sensory nasal respiratory cilia of four vertebrate species (frog, ox, rat and dog) shows that the olfactory cilia have 7±1 (mean±standard deviation) strands in the three mammalian species and 6±1 strands in the frog; for the respiratory cilia these values are 5±1 and 4±1. This function- and species-dependency of ciliary necklace strand numbers is supported by a review of the literature. Necklaces show no other structural differences. Necklace strand densities range from 25–33 strands/m. In both sensory and non-sensory cilia ciliogenesis is preceded by the formation of necklace strands. Sometimes cilia do not develop properly, as demonstrated by the presence of necklace-like structures in the membranes of olfactory dendritic endings and respiratory axonemal aggregates.  相似文献   

5.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

6.
7.
《Journal of morphology》2017,278(9):1208-1219
The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal‐exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum , Hypsiboas pulchellus , and Xenopus laevis ). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal‐exposed olfactory epithelium was absent in X. laevis , and best developed in H. pulchellus . In postmetamorphic animals, the olfactory epithelium (air‐sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus ), whereas the vomeronasal and the middle chamber epithelia (water‐sensitive organs) was best developed in X. laevis . A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus . These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis . They also support a role for the larval buccal‐exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis , an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.  相似文献   

8.
The nuchal organs of annelid Laonice bahusiensis (Spionidae) from northern Europe have been studied using scanning and transmission electron microscopy. L. bahusiensis is the first spionid species in which extensively developed, continuous nuchal organs are described. The nuchal organs of this genus are the longest known among polychaete annelids. They consist of paired double bands extending from the prostomium on a mid‐dorsal caruncle for about 24–30 setigers. Their microanatomy corresponds to the general structural plan of nuchal organs: there are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving‐stone‐like cover and innervated by one pair of longitudinally elongated nuchal nerves. These findings clearly favor the hypothesis that the paired, extensively developed ciliated structures found in some Spionidae are homologous with the prostomial nuchal organs characteristic of polychaete annelids. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Receptors for olfactory stimulus molecules appear to be located at the surface of olfactory receptor cells. The ultrastructure of the distal region of rainbow trout (Salmo gairdneri) olfactory epithelium was examined by transmission electron microscopy. On the sensory olfactory epithelium, which occurs in the depressions of secondary folds of the lamellae of the rosettes, five cell types were present. Type I cells have a knob-like apical projection which is unique in this species because it frequently contains cilia axonemes within its cytoplasm in addition to being surrounded by cilia. Type II cells bear many cilia oriented unidirectionally on a wide, flat surface. Type III cells have microvilli on a constricted apical surface and centrioles in the subapical cytoplasm. Type IV cells contain a rod-like apical projection filled with a bundle of filaments, and type V cells are supporting cells. Cilia on the sensory epithelium contain the 9 + 2 microtubule fiber pattern. Dynein arms are clearly present on the outer doublet fibers, which suggests that the cilia in the olfactory region are motile. Their presence in olfactory cilia of vertebrates has been controversial. The cilia membrane in this species is unusual in often showing outfoldings, within which are included small, irregular vesicles or channels. In addition, cilia on type II cells frequently contain dense-staining bodies closely apposed to the membranes, along with a densely stained crown at the cilia tip. Previous biochemical evidence indicates that odorant receptors are associated with the cilia.  相似文献   

10.
A review of the primary literature on the cartilaginous fishes (sharks, skates, rays and chimaeras), together with new information suggests that 106 species occur in Chilean waters, comprising 58 sharks, 30 skates, 13 rays and five chimaeras. The presence of 93 species was confirmed, although 30 species were encountered rarely, through validated catch records and sightings made in artisanal and commercial fisheries and on specific research cruises. Overall, only 63 species appear to have a range distribution that normally includes Chilean waters. Actual reliable records of occurrence are lacking for 13 species. Chile has a cartilaginous fish fauna that is relatively impoverished compared with the global species inventory, but conservative compared with countries in South America with warm‐temperate waters. The region of highest species richness occurs in the mid‐Chilean latitudes of c. 30–40° S. This region represents a transition zone with a mix of species related to both the warm‐temperate Peruvian province to the north and cold‐temperate Magellan province to the south. This study provides clarification of species occurrence and the functional biodiversity of Chile's cartilaginous fish fauna.  相似文献   

11.
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.  相似文献   

12.
Eelpouts of the family Zoarcidae comprise a monophyletic group of marine fishes with a worldwide distribution. Centers of high zoarcid diversity occur in the North Atlantic and North Pacific, with important radiations into the Arctic, along southern South America, and into the Southern Ocean around Antarctica. Along with snailfishes (Liparidae), zoarcids form an important component of the non-notothenioid fauna in the subzero shelf waters of Antarctica. We document the anatomy and histology of the brains, cranial nerves, olfactory apparatus, cephalic lateral lines, taste buds, and retinas of three Antarctic zoarcid species, living at depths of 310-939 m, representing three of the nine genera from this region. The primary emphasis is on Ophthalmolycus amberensis, and we provide a detailed drawing of the brain and cranial nerves of this species. Although this brain reflects general perciform neural morphology, it exhibits a reduction of the (optic) tecta and the eminentia granulares and crista cerebellares of the lateral line system. Interspecific differences among the three species are slight. The olfactory rosette consists of three to four lamellae and the nasal sac, contrary to the claim of Fanta et al. ([2001] Antarct Rec, Natl Inst Polar Res, Tokyo 45:27-42), is not in communication with the cephalic lateral line system. Primary olfactory neurons are abundant and converge on branches of the olfactory nerve. Numerous taste buds are located in the lips. All three species lack an ocular choroid rete and have relatively thin retinas with a low cell density and a single bank of rods as the only type of photoreceptor. Neural diversification among Antarctic zoarcids has not involved the evolution of sensory specialists; brain and sensory organ morphologies do not approach the condition seen in primary deep-sea fishes, or even that of some sympatric non-perciform secondary deep-sea fishes, including liparids and muraenolepidids (eel cods). There may be phylogenetic constraints on brain morphology in perciforms such that we do not see extreme specialization in sensory and neural systems for deep habitats. We suggest that the brains and sensory organs of Antarctic zoarcids reflect habitation of 500-2,000-m depths and likely reflect morphologies seen in zoarcids living on continental slopes elsewhere in the world. This balance among the sensory modalities makes zoarcids relatively generalized among secondary deep-sea fishes and may be one of the reasons this opportunistic and adaptable group has been successful in colonizing a variety of emergent and ephemeral habitats.  相似文献   

13.
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit Gαolf/s, which activates cyclic AMP during transduction. Localization of G protein subunits Gα0 and Gαq/11 to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.  相似文献   

14.
The nuchal organs of Stygocapitella subterranea are paired narrow pits. They are lined by unciliated cells at the opening and by ciliated cells at the basal parts. The primary sensory cells (6–8) are arranged in a single patch at the bottom of the nuchal pit. The nuclei of the sensory cells are located in the posterior portion of the brain. Their dendrites form the nuchal nerve which is sheathed by the ciliated cells. Each sensory cell bears up to 4 modified sensory cilia and several microvilli extending into the olfactory chamber. The sensory cilia show various patterns of axonemal organization and have no rootlets. The olfactory chamber is covered by a cuticular matrix. Another primary sensory cell lies at the opening of the nuchal pit. It bears cilia which penetrate the cuticle but are enveloped by the epicuticle. Retractor muscles insert caudally on the organ. The nuchal organ of S. subterranea shows similarities to those of opheliids but exhibits several features not to be found in other nuchal organs.  相似文献   

15.
Opheliid nuchal organs are composed of ciliated cells, retractor muscles, and sensory cells. The perikarya of sensory cells are located in the posterior portion of the brain, and their distal processes extend along the body wall, as the nuchal nerve, and terminate just anterior to the ciliated region. The nuchal nerve of the juvenile is composed of 30–35 dendrites; the adult nuchal nerve has 35–40 dendrites. The ends of the sensory dendrites form sensory bulbs which are clustered around the olfactory chamber, and each bulb bears a modified cilium. Sensory cilia lose their axonemes and extend as microvillous-like structures into the olfactory chamber. Supportive cells delineate approximately the posterior and dorsal portions of the chamber with sensory bulbs forming the remaining ventral and anterior portions. On the lateral aspect of the chamber, cuticular matrix extends into it, and in this area supportive cells bear microvilli which extend into the matrix. The adult nuchal organ is larger than that of the juvenile, and the sensory portion of the olfactory chamber wall is expanded. Expansion of the sensory area is apparently the result of size increase in sensory bulbs and by intrusion of supportive cells between sensory bulbs.  相似文献   

16.
The Korean shuttles mudskipper Periophthalmus modestus has paired olfactory organs on its snout, consisting of anterior and posterior nostrils, a single olfactory canal with sensory and nonsensory epithelia, and a single accessory nasal sac. Its sensory epithelium consists of numerous islets forming a pseudostratified layer and contains various cells: olfactory receptor neurons, supporting cells, basal cells, lymphatic cells (LCs), and axon bundles. The sensory epithelium is a stratified squamous layer comprising stratified epithelial cells, mucous cells (MCs) with glycogen, flattened cells (FCs), LCs, and unidentified cells. Specific structures are as follows: (a) a tubular anterior nostril projecting outward, (b) a slit posterior nostril, (c) an elongated olfactory canal, (d) an ethmoidal accessory nasal sac, (e) axon bundles found only in the basal layer of the sensory epithelium, (f) FCs only at the top of the nonsensory epithelium, and (g) glycogen-containing MCs. Such structures seem to be unique in that they have not been observed in most teleost fishes spending their whole life in water.  相似文献   

17.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

18.
This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho‐pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrPSc, was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrPSc co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 103.9 median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrPSc amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants.  相似文献   

20.
Kuciel, M., ?uwa?a, K., Jakubowski, M. 2011. A new type of fish olfactory organ structure in Periophthalmus barbarus (Oxudercinae). —Acta Zoologica (Stockholm) 92 : 276–280. The study describes a new type of olfactory organ structure in teleost fish, the Atlantic mudskipper Periophthalmus barbarus (Gobiidae). The nasal cavity in this species consists of a tube‐like elongated canal widening to a chamber‐like sac in the preorbital part of the head. The olfactosensory epithelium (studied by light and electron microscopy) occurs only in the form of islets located along the medial wall of the tube‐like part of the organ. The presence of a chamber‐like sac without an olfactory rosette or olfactosensory epithelium suggests that a mechanism allowing water circulation is in operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号