首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lindahl (1948) has described the early ontogenesis of 14 fetal stages of Procavia capensis. The oldest fetus of his series has had a headlength of 20 mm. It is the series with which the present account on the development of the tympanic region in hyracoids starts. Further middle to late fetuses have been studied by means of serial sections or macroscopic preparations. First 5 different ontogenetic stages are described, and then we follow the development of different organs in their ontogenesis. Results: 1. The development of the tympanic region is almost completed at birth, except for the external meatus. The bulla tympani is fully ossified. 2. The entotympanic forms the medial and rostral part of the Bulla tympani. Its anlage is first met at a headlength of 31 mm. From the very beginning, it is fused with the tubal cartilage. Hyracoids do not have a caudal entotympanic. The cartilaginous mass-taken for a caudal entotympanic by Van der Klaauw (1926)-is actually a tympanic process of the petrosal. Extensive discussion reveals that the structures named entotympanics in some eutherians are most likely not homologous. 3. It is almost impossible to separate the entotympanic from the tympanic in neonates already. This is due to the surprising fact that the tympanic produces secondary cartilage at the suture between the 2 elements. 4. A gonial is lacking in hyracoids; instead the malleus is fixed in a peculiar way at the tympanic. 5. According to Lindahl (1948), the stapedial artery exists till a fetal headlength of 14 mm. Then the artery obliterates but the crura stapedis with the stapedial foramen persist. 6. Hyracoids possess a tympanohyal which changes its relation to the facial nerve during ontogenesis. 7. The development of the Eustachian sac (Diverticulum tubae auditivae) is described and compared with its development in the horse, based on the few data available in literature. 8. The internal carotid artery changes its course during its ontogenesis. Up to late stages it passes over the caudal part of the Eustachian sac and along the medial side of the Bulla tympani. A sulcus caroticus might still be seen in neonates. It is only in postnatal development that it looses the course along the bulla and passes along the mediocaudal side of the Eustachian sac. 9. The formation of the Recessus meatus acustici externi in exactly takes place the way described only once by Hammar (1902). The cavitation of the recessus occurs independently of the cavity of the external meatus.  相似文献   

2.
In the majority of extant placental mammals the bulla tympanica is composed of two skeletal elements, the entotympanic and the ectotympanic. Former studies revealed that the presence of an entotympanic in the bulla tympanica of extant Perissodactyla is restricted to Rhinocerotidae. The existence of the entotympanic in Tapiridae and Equidae remained speculative. Here we present the first evidence of an entotympanic, strictly speaking rostral entotympanic, in the domestic horse, Equus caballus. The enchondrally ossified entotympanic can be easily separated from the desmal ectotympanic by its greater thickness and by its cancellous bone texture in a late fetal stage. Both elements are separated by a suture that is in the process of coalescence. The complete fusion of the two elements and the unification of bone texture are almost accomplished at birth but the entotympanic and ectotympanic assume the same thickness obviously not until early postnatal development. Based on modern phylogenetic hypotheses we can conclude that the common ancestor of Perissodactyla must have possessed a well-developed entotympanic, probably only evident in their fetal life. This must be considered as a plesiomorphic character state of this order, because the entotympanic is a neomorphic apomorphy of placental mammals. However, the prenatal fusion of the entotympanic and the ectotympanic is an apomorphy of Equus caballus and possibly of the Equidae as a whole.  相似文献   

3.
Ontogenetic investigations confirm that independent entotympanics are absent in living primates. Although cartilage occurs in the petrosal tympanic processes of some primates, the assumption that a suppressed entotympanic is thereby indicated can be adequately refuted according to embryological canons of interpretation. Problems regarding the homologies of different entotympanics, largely ignored by paleontologists and systematists, reduce or negate their taxonomic valency for all but closely related groups. Until such puzzles are resolved, the possible but doubtful existence of entotympanics in plesiadapoids and inferred pre-primate ancestors cannot buttress claims for alleged ties between primates and certain entotympanic-bearing eutherians (principally bats, colugos and tree shrews).  相似文献   

4.
The structure of the tympanic region of the skull of Ptilocercus lowii was studied in an embryo of 30 mm crown-rump length and in 5 osteocrania. As in Tupaia, the anterior wall of the bulla of Ptilocercus is not completed by a tympanic process of the alisphenoid, contrary to earlier reports. Ptilocercus resembles Tupaia in the following derived characters. The ventral wall of the tympanic cavity is formed by a rostral entotympanic and by a caudal tympanic process of the petrosal. The entotympanic develops in primary connection with the tubal cartilage. The tympanic aperture of the auditory tube is bordered by the entotympanic. The ring-shaped tympanicum is covered by the entotympanicum and is aphaneric. The musculus tensor tympani is lacking. Among mammals, these characters can be regarded as synapomorphic for the Tupaiidae, that is, to have been present in the common ancestor of the two subfamilies. From the evidence of the tympanic region, the Tupaiidae, therefore, form a monophyletic group. Besides these synapomorphies, there are remarkable differences between Ptilocercus and Tupaia in the structure of the bulla. In Ptilocercus the bulla is smaller and less pneumatized than in Tupaia. An anterior intrabullar septum, present in Tupaia, is lacking in Ptilocercus. The epitympanic wing of the alisphenoid is smaller in Ptilocercus than in Tupaia. A lateral prefacial commissure of the tegmen tympani is present in Ptilocercus, but absent in Tupaia. The caudal tympanic process of the petrosal is larger in Ptilocercus than in Tupaia. These characters are autapomorphic for the Ptilocercinae and for the Tupaiinae, respectively. They demonstrate that the auditory bulla of Ptilocercus and that of Tupaia have evolved independently to a considerable extent. An early phylogenetic separation of their respective ancestors seems likely. The tympanic region of the skull provides no evidence for close relationships of the tree shrews to the primates or to any other eutherians. The classification of the Tupaiidae in a separate order, Scandentia, is supported.  相似文献   

5.
In Felis, the otic region of younger embryonic stages up to Felis 1 is characterized by extremely medial extended cochleae, compressing the basal plate to a slender trabeculum. As a result of a quite strong rostrad convergence of the long axis of the ear capsules, the Commissura praefacialis fuses with the Commissura orbitoparietalis laterally. Until now, this has been found in whales only. Continuing embryogenesis towards Felis 2, the cochlea moves laterally and slightly ventrally, so the angle of convergence between the whole Capsula otica and the skull base decreases. The problem of interpreting these positional changes of the Capsula otica during phylogenesis and ontogenesis is discussed in detail. Up to recent literature, there is a discussion about homology of the Foramen perilymphaticum and allied structures in reptiles referring to the openings in the Capsula otica in mammals. Configuration of these structures in fissiped carnivores and the appearance of a "limitating membrane" in Felis 2, gives reason for a new discussion of these problems. Composition of the Bulla tympani is a very important feature for investigation of phylogeny and systematics in fissiped carnivores. In Felis 2, there appears a caudal entotympanic, consisting of young cartilaginous tissue. The development of the caudal entotympanic has impact on 2 structures in the occipital region: The Lamina alaris and the Processus paracondyloideus. Felis 1 shows a distinct Lamina alaris and a short Processus paracondyloideus. With Felis 2, either element is reduced largely, probably to the extent as the caudal entotympanic develops.  相似文献   

6.
O Slaby 《Folia morphologica》1990,38(2):212-224
Three stages of morphogenesis of the nasal apparatus of the red deer (Cervus elaphus L.) were studied. Many ancestral traits reminiscent of relationships in other mammals and even in reptiles were found, including a cart, ectochoanalis, paraseptal cartilages, the septum nasi and its ventral trabecular enlargement, a lamina transversalis ant., clear separation of the cart, parietotectalis and cart, paranasalis from each other and a crista semicircularis. A maxilloturbinale, was present, but not a nasoturbinale. The main specific features were a completely rostrally localized, peculiar cartilaginous structure in the preseptal space, for which there is as yet no morphological explanation, and pronounced bulging of the cartilaginous wall of the nasal capsule in a ventrolateral direction, level with the rostral region of the olfactory labyrinth (caudally to the aboral end of the maxilloturbinale). In the early stages of morphogenesis, it was found that the ethmoturbinalia might be formed by fusion of the edges of the anlagen of the paranasal cartilage and the lamina orbitonasalis. The structure of the olfactory labyrinth was reminiscent of its organization in the sheep embryo; the recessus frontalis was completed by a series of frontoturbinal recesses and frontoturbinalia, which are poorly developed in the red deer, however. The floor of the caudal part of the nasal capsule was very little developed and there was no cart, paraseptalis post.  相似文献   

7.
The phylogenetic relationship between Nandinia binotata and Feloidea is analysed by the cladistic method, based on a literature review of osteological characters used in systematic works on carnivores for more than a century. The reduced or lost postglenoid foramen is a synapomorphy that define Nandinia and Feloidea as a monophyletic group. Nandinia does not have an ectotympanic septum in the bulla nor a paroccipital process nested with the posterior wall of the bulla, which are autapomorphies for the Feloidea. Thus it is hypothesized that Nandinia binotata has a sister-group relation to Feloidea. The cartilaginous caudal entotympanic is an autapomorphy for Nandinia.  相似文献   

8.
The Entotympanic of Pangolins and the Phylogeny of the Pholidota (Mammalia)   总被引:3,自引:0,他引:3  
Entotympanics are independent elements present in the auditory bullae of various eutherians. An entotympanic has been reported for extant pangolins of the Order Pholidota, but the actual distribution of this element remains uncertain, in part, because it is a small, loosely attached structure that is often lost in macerated skulls. Consequently, it is unknown whether or not the entotympanic characterizes Pholidota primitively or has evolved within the group. This report addresses the morphology and distribution of the entotympanic among living and extinct pholidotans. An entotympanic occurs in the African pangolins Manis gigantea, M. temminckii, and in one specimen of M. tricuspis. In each, it is a small, nodular bone that occupies a distinct fossa primarily on the basioccipital, the presence of which allows us to assess the occurrence of an entotympanic even in specimens in which the bone has fallen out. Both the entotympanic and the basioccipital facet are lacking in the four remaining extant pangolin species and in the late Eocene pangolin Patriomanis. To assess the significance of this entotympanic distribution, a phylogenetic analysis of extant pangolins plus Patriomanis based on 67 cranial characters was performed. Four different outgroup analyses all resulted in the same single most parsimonious tree, in which the three extant Asian pangolins form a monophyletic clade and the four extant African pangolins fall into a paraphyletic assemblage. Optimization of the entotympanic distribution onto this tree results in two patterns, dependent on the outgroup choice. If Patriomanis is the sole outgroup to the extant pangolins, the entotympanic arises within pangolins as a synapomorphy of Manis gigantea and M. temminckii, convergently acquired in some M. tricuspis. If Xenarthra and Palaeanodonta are employed as outgroups, the entotympanic optimization is ambiguous: the pattern is either as above or the entotympanic is present primitively within Pholidota and lost secondarily in Patriomanis and a clade comprising M. tricuspis, M. tetradactyla, and the Asian forms.  相似文献   

9.
We analyzed a comprehensive data set of ossification sequences including seven marsupial, 13 placental and seven sauropsid species. Data are provided for the first time for two major mammalian clades, Chiroptera and Soricidae, and for two rodent species; the published sequences of three species were improved with additional sampling. The relative timing of the onset of ossification in 17 cranial elements was recorded, resulting in 136 event pairs, which were treated as characters for each species. Half of these characters are constant across all taxa, 30% are variable but phylogenetically uninformative, and 19% potentially deliver diagnostic features for clades of two or more taxa. Using the conservative estimate of heterochronic changes provided by the program Parsimov, only a few heterochronies were found to diagnose mammals, marsupials, or placentals. A later onset of ossification of the pterygoid with respect to six other cranial bones characterizes therian mammals. This result may relate to the relatively small size of this bone in this clade. One change in relative onset of ossification is hypothesized as a potential human autapomorphy in the context of the sampling made: the earlier onset of the ossification of the periotic with respect to the lacrimal and to three basicranial bones. Using the standard error of scaled ranks across all species as a measure of each element's lability in developmental timing, we found that ossification of early, middle, and late events are similarly labile, with basicranial traits the most labile in timing of onset of ossification. Despite marsupials and placental mammals diverging at least 130 Ma, few heterochronic shifts in cranial ossification diagnose these clades.  相似文献   

10.
Studied the morphogenesis of the Fenestra rotunda and of the Aquaeductus cochleae in a series of 23 dated embryos and postnatal stages of Tupaia belangeri. The ontogeny of the Fenestra rotunda is the result of the caudal growth of the Processus recessus (DE BEER 1937). The Processus arises from the caudal ridge of the floor of the cochlear part of the otic capsule. On the 28th d of ontogeny (the gestation period of Tupaia belangeri is 43 d), it is fused with the lateral edge of the parachordal plate. On the 40th d, the Processus recessus joins the ventral surface of the canalicular part of the otic capsule, which develops a small cartilaginous process to meet it. In Tupaia, the Processus recessus is a large cartilaginous plate in a nearly horizontal position. It does not reach the plane of the Foramen perilymphaticum. The Processus recessus can be regarded as a part of the parachordal plate that was shifted laterally together with the Recessus scalae tympani by the enlargement of the cochlear part of the otic capsule in the ancestors of living mammals. The Processus forms the floor of the Aquaeductus cochleae, by which the laterally shifted Recessus scalae tympani of mammals remains connected with the cranial cavity. The Aquaeductus cochleae contains the Ductus perilymphaticus connecting the Cavum perilymphaticum of the inner ear with the Cavum leptomeningeum. The Fenestra rotunda of mammals is homologous with the lateral aperture of the Recessus scalae tympani of reptiles. In some mammals (e.g. Micropotamogale), the Membrana tympani secundaria spans the lateral aperture of the Recessus scalae tympani, as in many reptiles. Both the Membrana tympani secundaria of reptiles and that of mammals are homologous. Secondarily, in a large number of therian mammals (e.g. Myotis [Frick 1952]), the tympanic cavity extends into the Recessus scalae tympani displacing the Membrana tympani secundaria medially from the lateral aperture of the Recessus scalae tympani (= Fenestra rotunda of mammals) and even into the plane of the Foramen perilymphaticum. Thereby the Fossula fenestrae rotundae is formed, which in bounded medially by the Membrana tympani secundaria.  相似文献   

11.
Konstantinidis P. and Johnson, G. D. 2012. A comparative ontogenetic study of the tetraodontiform caudal complex. —Acta Zoologica (Stockholm) 93 : 98–114. Interpretation of the caudal complex of adult Tetraodontiformes has proven problematic because of the consolidation of the component elements. Here, we show that an ontogenetic approach offers considerable elucidation of the homology of the caudal complex, resulting in a new understanding of the grundplan of these fishes. The reductions of structures of the caudal complex are interpreted in a phylogenetic context. The caudal skeleton of larval triacanthodids resembles that of many adult percomorphs; however, during subsequent development epural 3 disappears, while epural 2 is reduced so that it can hardly be distinguished from the uroneural remnants. Juvenile triacanthids have an epural 2 that is lost in ontogeny, and the cartilaginous parhypural becomes integrated into the large hypural plate. In ostraciids and diodontids, the parhypural is absent throughout development. The hypural plates of adult balistids, monacanthids and tetraodontids have a conspicuous diastema between the dorsal and ventral portions. However, in early stages of the former two, the dorsal and ventral portions are continuous in cartilage proximally and remain fused in the adults. In tetraodontids, the two hypurals are separate from their initial appearance in cartilage and never fuse, raising the question of homology of the individual hypurals among the different families.  相似文献   

12.
The review of the data on comparative chromosomal painting in mammals is presented. The development of new molecular–cytogenetic methods has resulted in the accumulation of the detailed information on homology of chromosomal segments of more than 50 species from 11 orders. In this review, modern methods of obtaining painting probes are considered in detail, and the basic tendencies of karyotype evolution in different taxa are discussed. Putative karyotypes of the ancestors of primates, carnivores, and placental mammals are considered.  相似文献   

13.
Epoxiconazole (CAS‐No. 133855‐98‐8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7–18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole‐mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose‐dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. Birth Defects Res (Part B) 98:208–221, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Five new species of marsupials are described from the middle Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. Three are derorhynchid didelphimorphians; one species is a prepidolopid polydolopimorphian, and the last is a microbiotheriid australidelphian. Additionally, fragmentary specimens representing an indetermined derorhynchid and a possible marsupial are also described. The prepidolopid and one of the derorhynchids are sufficiently derived as to preclude any close relationship to other members of that family, but the remaining taxa show the closest affinity with species otherwise known only from Itaboraian and older faunas in Patagonia. This differs from the affinity to early Eocene (Casamayoran) taxa shown by the polydolopid marsupials and placental mammals previously known from the La Meseta Formation. The newly described marsupials indicate that the relict La Meseta Fauna is composed of forms that must have dispersed to Antarctica no later than about early late Paleocene, whereas the previously known taxa apparently arrived in the early Eocene. Ecologically, the La Meseta Fauna is composed mostly of small-sized marsupials of likely insectivorous to frugivorous habits and larger-sized placental herbivores. Whereas the ratite bird of the La Meseta Fauna was probably also herbivorous, the phorusrhachoid and falconid birds comprised a large and smaller carnivorous to possibly scavenging component, respectively. Compared to contemporary faunas of Patagonia, the medium- to large-sized marsupial carnivores are lacking in the Antarctic Peninsula. Nevertheless, the La Meseta Fauna is Patagonian in origin and affinity. In conjunction with new faunas of Itaboraian age (early late Paleocene) in Patagonia, the evidence available indicates that from at least Itaboraian time onward the land mammal fauna of Patagonia and northern South America, as well, is a self-contained unit, developing the diversity characteristic of the Paleogene in that continent, including the australidelphian (but South American) microbiotheres. This, in combination with the apparent separation of Australia from Antarctica at ca. 64 Ma, reinforces interpretations that the precursors of the Australian marsupial fauna most likely dispersed from South America to Australia in the late Cretaceous–early Paleocene.  相似文献   

15.
The auditory bulla is a much-scrutinized taxonomic character of mammals, which is generally regarded as showing a high degree of structural consistency within higher taxa. Observations of bulla variability in populations of the marsupial Phalanger orientalis from the Solomon Islands demonstrate considerable flexibility in bulla makeup, with variable incorporation of the squamosal into the tympanic floor. Studies of the ontogeny of the bulla in Phalanger show the presence of three ossification centres, including an entotympanic. Squamosal invasion of one of these ossificiation centres is seen as a possible result of inbreeding, arising from the mode of colonization of the Solomon Islands by this species. This suggests that, under certain conditions, considerable morphological plasticity may be induced within the selective constraints of bulla function.  相似文献   

16.
Recently discovered cartilaginous structures in the forehead of the sperm whale (Behrmann and Klima 1985) were investigated histologically. The largest and most important of these structures is the nasal roof cartilage which can be derived from the tectum nasi, a part of the embryonic nasal capsule (Klima et al. 1986). In the investigated sperm whale fetuses, this structure consists of embryonic hyaline cartilage which is well suited for morphogenetic processes and fast growth. In the investigated adult sperm whale, the originally hyaline cartilage has been transformed into a special kind of elastic cartilage. The arrangement of cells, territories, and extracellular substance resembles hyaline cartilage. This component represents an adaptation to pressure load. The appearance and arrangement of elastic fibres resembles elastic cartilage. This component is an adaptation to distortion forces. Obviously, pressure and distortion are the strongest mechanical strains that the nasal roof cartilage is exposed. We see the function of this cartilage structure therein that, being a pressure-elastic skeletal support and following the left nasal meatus along its whole extension through the massive and soft forehead, it secures the only direct respiratory passage. Additionally, fibre bundles of transversely striated muscles are anchored in the perichondrium of the nasal roof cartilage. The function of this delicately interwoven muscle system is seen by us in the fine tuning of contraction and dilatation of the respiratory passage. Moreover, a possible function as a sound conducting cartilaginous structure serving the echolocation system is considered (c.f. Pilleri et al. 1983).  相似文献   

17.
The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small‐to‐large‐bodied, diverse taxa has driven a hypothesis that the end‐Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown‐placental mammal unambiguously pre‐dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end‐Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.  相似文献   

18.
The caudal skeleton of Apteronotus leptorhynchus was studied at various stages from hatching to the adult stage using anatomical and histological techniques. The caudal skeleton that supports the lepidotrichia is reduced to a rhomboid caudal plate (caudal cartilage) that extends the vertebral axis. This cartilage appears for the first time in 8 day old fish, postero-ventral to the notochord. During its growth, perichondral and endochondral ossification occurs, beginning at the anterior end of the cartilage. Comparison with the anatomy and ontogeny of the typical caudal skeleton of teleosts allows us to interpret the caudal cartilage of A. leptorhynchus as an hypuro-opisthural component that is homologous to the cartilage that occurs at the tip of the axial skeleton in Eigenmannia virescens.  相似文献   

19.
Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods) plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators), showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.  相似文献   

20.
The stingray family Myliobatidae contains five durophagous (hard prey specialist) genera and two planktivorous genera. A suite of morphological features makes it possible for the hard prey specialists to crush mollusks and crustaceans in their cartilaginous jaws. These include: 1) flat, pavement-like tooth plates set in an elastic dental ligament; 2) multiple layers of calcified cartilage on the surface of the jaws; 3) calcified struts running through the jaws; and 4) a lever system that amplifies the force of the jaw adductors. Examination of a range of taxa reveals that the presence of multiple layers of calcified cartilage, previously described from just a few species, is a plesiomorphy of Chondrichthyes. Calcified struts within the jaw, called "trabecular cartilage," are found only in the myliobatid genera, including the planktivorous Manta birostris. In the durophagous taxa, the struts are concentrated under the area where prey is crushed, thereby preventing local buckling of the jaws. Trabecular cartilage develops early in ontogeny, and does not appear to develop as a direct result of the stresses associated with feeding on hard prey. A "nutcracker" model of jaw function is proposed. In this model, the restricted gape, fused mandibular and palatoquadrate symphyses, and asynchronous contraction of the jaw adductors function to amplify the closing force by 2-4 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号