首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Despite the frequent isolation of endospore‐formers from marine sponges, little is known about the diversity and characterization of individual isolates. The main aims of this study were to isolate and characterize the spore‐forming bacteria from the marine sponge Haliclona simulans and to examine their potential as a source for bioactive compounds. Methods and Results: A bank of presumptive aerobic spore‐forming bacteria was isolated from the marine sponge H. simulans. These represented c. 1% of the total culturable bacterial population. A subgroup of thirty isolates was characterized using morphological, phenotypical and phylogenetic analysis. A large diversity of endospore‐forming bacteria was present, with the thirty isolates being distributed through a variety of Bacillus and Paenibacillus species. These included ubiquitous species, such as B. subtilis, B. pumilus, B. licheniformis and B. cereus group, as well as species that are typically associated with marine habitats, such as B. aquimaris, B. algicola and B. hwajinpoensis. Two strains carried the aiiA gene that encodes a lactonase known to be able to disrupt quorum‐sensing mechanisms, and various isolates demonstrated protease activity and antimicrobial activity against different pathogenic indicator strains, including Clostridium perfringens, Bacillus cereus and Listeria monocytogenes. Conclusions: The marine sponge H. simulans harbours a diverse collection of endospore‐forming bacteria, which produce proteases and antibiotics. This diversity appears to be overlooked by culture‐dependent and culture‐independent methods that do not specifically target sporeformers. Significance and Impact of Study: Marine sponges are an as yet largely untapped and poorly understood source of endospore‐forming bacterial diversity with potential biotechnological, biopharmaceutical and probiotic applications. These results also indicate the importance of combining different methodologies for the comprehensive characterization of complex microbial populations such as those found in marine sponges.  相似文献   

2.
3.
Aims: The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge‐derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Methods and Results: Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate‐based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5‐dinitrosalicylic acid (DNSA)‐based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Conclusions: Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine‐derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Significance and Impact of the Study: Marine‐derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.  相似文献   

4.
A total of seven microsatellites out of 88 isolated from a genomic library enriched for (CA)n and (GA)n repeats were characterized in the Mediterranean marine sponge Scopalina lophyropoda. The microsatellite motifs were large (34.81 ± 13.9 bp) and imperfect. The seven microsatellite loci were screened in 30 individuals collected from Blanes, northwestern Mediterranean. All of them were polymorphic (allele numbers and observed heterozygosities ranged from 3 to 6 and from 0.16 to 0.76, respectively). No significant linkage disequilibrium between pairs of loci and no departure from Hardy–Weinberg equilibrium were found. These markers are therefore promising for studies of the population structure of the species.  相似文献   

5.
Lectin II from the marine sponge Axinella corrugata (ACL-II) was purified by affinity chromatography on rabbit erythrocytic stroma incorporated into a polyacrylamide gel, followed by gel filtration on Ultrogel AcA 44 column. Purified ACL-II is a lectin with an Mr of 80 kDa and 78 kDa, estimated by SDS-PAGE and by FPLC on Superose 12 HR column, respectively. ACL-II mainly agglutinates native rabbit erythrocytes and this hemagglutinating activity is independent of Ca2 +, Mg2 + and Mn2 +, but is inhibited by d-galactose, chitin and N-acetyl derivatives, with the exception of GalNAc. ACL-II is stable for up to 65 °C for 30 min, with a better stability at a pH range of 2 to 6. In contrast, ACL-I displays a strong mitogenic and cytotoxic effect.  相似文献   

6.
We examined how the physical environment influences the growth and survival of an undescribed Haliclona species. To determine the influence that water movement, light and sediment had on the sponge, explants of Haliclona sp. (approximately 8 cm3 in size) were transplanted into manipulated microenvironments at Hamelin Bay on the west coast of Western Australia near Perth. The sponge is typically found under limestone ledges and appears to have distinct limits on the microenvironment in which it is found. A three-factor orthogonal design was used to manipulate levels of light, water flow and sedimentation. Each factor had two experimental levels, creating environments with high and low water movement, high and low light, and upward and downward orientations to control sediment levels. The survival of explants was high (100%). However, all explants showed a regression in weight. Explants transplanted on to the underside of horizontal surfaces (downward orientations) demonstrated significantly less weight loss (P = 0.023), which was attributed to lower sediment exposure. Light and water movement did not significantly influence the sponge's growth.  相似文献   

7.
The need to produce bioactive compounds from marine sponges leads several groups of research to the culture of primmorphs from different species, which are generally maintained in aquaria for long time before processing. Here we present a study where the importance of several parameters on primmorphs production from the symbiotic sponge Petrosia ficiformis has been evaluated: (i) the sterility of sea water, (ii) the maintenance in aquarium before processing, (iii) the seasonal cycle. Sterility of sea water does not improve primmorphs production in this species. The maintenance of sponges in aquaria before processing negatively affects cell cultures. Regarding seasonality, it is evident that both the number and the size of primmorphs can deeply change depending on the period of the year the sponge is collected. April and July are the months that lead to the highest number of primmorphs, May and June are the months that lead to their biggest sizes. Possible relationships of these results with the life cycle of P. ficiformis are discussed.  相似文献   

8.
The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. A good method to produce these compounds by using aquaculture of sponges is not yet available, because there is insufficient knowledge about the nutritional needs of sponges. To gain more insight in the nutritional needs for growth, we studied the growth rate of Haliclona oculata in its natural environment and monitored environmental parameters in parallel. A stereo photogrammetry approach was used for measuring growth rates. Stereo pictures were taken and used to measure volumetric changes monthly during 1 year. Volumetric growth rate of Haliclona oculata showed a seasonal trend with the highest average specific growth rate measured in May: 0.012 +/- 0.004 day(-1). In our study a strong positive correlation (p < 0.01) was found for growth rate with temperature, algal biomass (measured as chlorophyll a), and carbon and nitrogen content in suspended particulate matter. A negative correlation (p < 0.05) was found for growth rate with salinity, ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate organic carbon.  相似文献   

9.
Novel Ca2+‐independent C‐type lectins, SPL‐1 and SPL‐2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL‐2 composed of two B‐chains) or distinct (SPL‐1 composed of A‐ and B‐chains) polypeptide chains, and show affinity for N‐acetylglucosamine (GlcNAc)‐ and N‐acetylgalactosamine (GalNAc)‐containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C‐type lectin family. X‐ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate‐recognition domain (CRD) of the C‐type lectin family. Nevertheless, these lectins (especially SPL‐2) showed Ca2+‐independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL‐2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate‐recognition motifs among the C‐type CRD (the QPD [Gln‐Pro‐Asp] and EPN [Glu‐Pro‐Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate‐binding specificities of individual A‐ and B‐chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α‐glycosidic linkages with slightly different specificities.  相似文献   

10.
Samples of the sponge Haliclona simulans were collected from Irish waters and subjected to a culture-independent analysis to determine the microbial, polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) diversity. 16S rRNA gene libraries were prepared from total sponge, bacterial enriched sponge and seawater samples. Eight phyla from the Bacteria were detected in the sponge by phylogenetic analyses of the 16S rRNA gene libraries. The most abundant phylum in the total sponge library was the Proteobacteria (86%), with the majority of these clones being from the γ- Proteobacteria (77%); two groups of clones were dominant and together made up 69% of the total. Both of these groups were related to other sponge-derived microbes and comprised novel genera. Within the other bacterial phyla groups of clones representing novel candidate genera within the phyla Verrucomicrobia and Lentisphaerae were also found. Selective enrichment of the bacterial component of the sponge prior to 16S rRNA gene analysis resulted in a 16S rRNA gene library dominated by a novel genus of δ- Proteobacteria , most closely related to the Bdellovibrio . The potential for the sponge microbiota to produce secondary metabolites was also analysed by polymerase chain reaction amplification of PKS and NRPS genes. While no NRPS sequences were isolated seven ketosynthase (KS) sequences were obtained from the sponge metagenome. Analyses of these clones revealed a diverse collection of PKS sequences which were most closely affiliated with PKS from members of the Cyanobacteria , Myxobacteria and Dinoflagellata .  相似文献   

11.
Mass-directed isolation of the CH2Cl2/CH3OH extract from a marine sponge of the genus Pseudoceratina resulted in the purification of a new antimalarial bromotyrosine alkaloid, psammaplysin H (1), along with the previously isolated analogs psammaplysins G (2) and F (3). The structure of 1 was elucidated following 1D and 2D NMR, and MS data analysis. All compounds were tested in vitro against the 3D7 line of Plasmodium falciparum and mammalian cell lines (HEK293 and HepG2), with 1 having the most potent (IC50 0.41 μM) and selective (>97-fold) antimalarial activity.  相似文献   

12.
The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life‐form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self‐shading under light‐limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses.  相似文献   

13.
以红菇属大白菇Russula delica和美丽红菇Russula lepida子实体为材料,利用离子交换柱层析、凝胶过滤层析的手段,分离获得新的凝集素RDL和RLL。结合凝胶过滤层析和SDS-PAGE的手段,确定RDL和RLL分别是分子量为60kDa和32kDa的双亚基蛋白,其N-末端部分氨基酸序列分别为GLKLAKQFAL和VWYIVAIKTDVPRTT。性质研究表明,RDL在20-70℃、低于25mmol/L HCl或12.5mmol/L NaOH下稳定,其凝集活性可以被邻硝基苯酚-β-D呋喃型半乳糖苷(25mmol/L)和菊糖(50mmol/L)所抑制;RDL具有抑制人肝癌Hep G2和人乳腺癌MCF7细胞增殖以及HIV-1反转录酶(RT)的活性,其半抑制浓度IC50分别为0.88μmol/L、0.52μmol/L和0.26μmol/L。RLL在20-70℃、低于12.5mmol/L HCl或NaOH下稳定,其凝集活性可以被菊糖(25mmol/L)和邻硝基苯酚-β-D呋喃型半乳糖苷(100mmol/L)所抑制;RDL具有抑制人肝癌Hep G2和人乳腺癌MCF7细胞增殖的活性,其半抑制浓度IC50分别为1.60μmol/L和0.90μmol/L,但不具有抑制HIV-1 RT的活性。  相似文献   

14.
This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different "PKS-I-PKS-II-NRPS" combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.  相似文献   

15.
16.
A new sarasinoside congener (sarasinoside M2) and known sarasinoside B1 were obtained from a marine sponge. Sarasinoside M2 was suggested to have the same aglycon as sarasinoside M although the internal glucose in its sugar moiety is replaced by xylose. Sarasinosides B1 and M2 showed moderate cytotoxicity (approximate IC50 5–18 μM) toward Neuro-2a and HepG2 cell lines.  相似文献   

17.
Investigation of a Philippine specimen of the red alga Ceratodictyon spongiosum and its sponge symbiont Haliclona cymaeformis led to the isolation of p-sulfooxyphenylpyruvic acid, whose structure was elucidated using spectroscopic methods, with the Z-enol geometry determined through analysis of (3)J(C,H) coupling constants. The metabolite was tested for tyrosine kinase inhibition using a (3)H-thymidine incorporation assay, but was found inactive.  相似文献   

18.
Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta‐) genomic analyses discovered an abundance of genes encoding for eukaryotic‐like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria–eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR‐SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria–sponge interactions.  相似文献   

19.
Two new cystine knot peptides, asteropsins F (ASPF) and G (ASPG), were isolated from the marine sponge Asteropus sp. ASPF and ASPG are composed of 33 and 32 amino acids, respectively, and contain six cysteines which are involved in three disulfide bonds. They shared the characteristic features of the asteropsin family, such as, N-terminal pyroglutamate modification, incorporation of cis prolines, and the unique anionic profile, which distinguish them from other knottin families. Tertiary structures of the peptides were determined by high resolution NMR. ASPF and ASPG were found to be remarkably resistant not only to digestive enzymes (chymotrypsin, pepsin, elastase, and trypsin) but also to thermal degradation. In addition, these peptides were pharmacologically inert; non-hemolytic to human and fish red blood cells, non-stimulatory to murine macrophage cells, and nontoxic in vitro or in vivo. These observations support their stability and biocompatibility as suitable carrier scaffolds for the design of oral peptide drug.  相似文献   

20.
Lectins and antimicrobial peptides (AMPs) are widely distributed in various insects and play crucial roles in primary host defense against pathogenic microorganisms. Two AMPs (cecropin and attacin) have been identified and characterized in the larvae of housefly. In this study, two novel C‐type lectins (CTLs) were obtained from Musca domestica, while their agglutinating and antiviral properties were evaluated. Real‐time PCR analysis showed that the mRNA levels of four immune genes (MdCTL1, MdCTL2, Cecropin, and Attacin) from M. domestica were significantly upregulated after injection with killed Gram‐negative Escherichia coli. Moreover, purified MdCTL1‐2 proteins can agglutinate E. coli and Staphylococcus aureus in the presence of calcium ions, suggesting their immune function is Ca2+ dependent. Sequence analysis indicated that typical WND and QPD motifs were found in the Ca2+‐binding site 2 of carbohydrate recognition domain from MdCTL1‐2, which was consistent with their agglutinating activities. Subsequently, antiviral experiments indicated that MdCTL1‐2 proteins could significantly reduce the infection rate of Spodoptera frugiperda 9 cells by the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, indicating they might play important roles in insect innate immunity against microbial pathogens. In addition, MdCTL1‐2 proteins could effectively inhibit the replication of influenza H1N1 virus, which was similar to the effect of ribavirin. These results suggested that two novel CTLs could be considered a promising drug candidate for the treatment of influenza. Moreover, it is believed that the discovery of the CTLs with antiviral effects in M. domestica will improve our understanding of the molecular mechanism of insect immune response against viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号