首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   

2.
3.
Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons   总被引:1,自引:0,他引:1  
Genomic DNA is damaged by a variety of factors exerting an adverse effect on human health, such as environmental pollution, UV light, ionizing radiation, and toxic compounds. Air pollution with products of incomplete combustion of hydrocarbon fuels and wastes of various industries are main sources of polycyclic aromatic hydrocarbons, whose metabolites can damage DNA by forming bulky DNA adducts, which potentially lead to mutations and cancer. Nucleotide excision repair is the main pathway that eliminates these lesions in eukaryotic cells. The excision efficiency of bulky adducts depends on many factors, including the structure of a bulky substituent and the degree of DNA double helix distortion induced by a lesion. Clustered DNA lesions are the most dangerous for the cell. Several DNA repair systems cooperate to recognize and remove such lesions. The review focuses on the mechanisms that repair DNA with single and clustered bulky lesions, taking the natural carcinogen benzo[a]pyrene as an example.  相似文献   

4.
Yuan B  Wang J  Cao H  Sun R  Wang Y 《Nucleic acids research》2011,39(14):5945-5954
Human cells are constantly exposed to environmental and endogenous agents which can induce damage to DNA. Understanding the implications of these DNA modifications in the etiology of human diseases requires the examination about how these DNA lesions block DNA replication and induce mutations in cells. All previously reported shuttle vector-based methods for investigating the cytotoxic and mutagenic properties of DNA lesions in cells have low-throughput, where plasmids containing individual lesions are transfected into cells one lesion at a time and the products from the replication of individual lesions are analyzed separately. The advent of next-generation sequencing (NGS) technology has facilitated investigators to design scientific approaches that were previously not technically feasible or affordable. In this study, we developed a new method employing NGS, together with shuttle vector technology, to have a multiplexed and quantitative assessment of how DNA lesions perturb the efficiency and accuracy of DNA replication in cells. By using this method, we examined the replication of four carboxymethylated DNA lesions and two oxidatively induced bulky DNA lesions including (5'S) diastereomers of 8,5'-cyclo-2'-deoxyguanosine (cyclo-dG) and 8,5'-cyclo-2'-deoxyadenosine (cyclo-dA) in five different strains of Escherichia coli cells. We further validated the results obtained from NGS using previously established methods. Taken together, the newly developed method provided a high-throughput and readily affordable method for assessing quantitatively how DNA lesions compromise the efficiency and fidelity of DNA replication in cells.  相似文献   

5.
Kroeger KM  Kim J  Goodman MF  Greenberg MM 《Biochemistry》2004,43(43):13621-13627
The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress by a variety of agents. For instance, the lesion accounts for approximately 40% of the DNA damage produced by the antitumor antibiotic bleomycin. The effect of C4-AP on DNA replication in Escherichia coli was determined using the restriction endonuclease and postlabeling (REAP) method. Three-nucleotide deletion products are the sole products observed following replication of plasmids containing C4-AP under SOS conditions in wild-type cells. Full-length products are formed in varying amounts depending upon the local sequence in wild-type cells under non-SOS-induced conditions. The "A-rule" is followed for the formation of substitution products. C4-AP is the first example of a DNA lesion that produces significant levels of three-nucleotide deletions in a variety of sequence contexts. Experiments carried out in cells lacking specific polymerases reveal that formation of three-nucleotide deletion products results from a coordinated effort involving pol II and pol IV. This is the first example in which these SOS inducible polymerases are shown to work in concert during lesion bypass. Three-nucleotide deletions are not observed during the replication of other abasic lesions, and are rarely produced by bulky adducts. The effect of C4-AP on DNA replication suggests a significant role for this lesion in the cytotoxicity of bleomycin. Formation of the C4-AP lesion may also be responsible for the formation of mutant proteins containing single-amino acid deletions that exhibit altered phenotypes.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Kalifa L  Sia EA 《DNA Repair》2007,6(12):1732-1739
Ultraviolet light is a potent DNA damaging agent that induces bulky lesions in DNA which block the replicative polymerases. In order to ensure continued DNA replication and cell viability, specialized translesion polymerases bypass these lesions at the expense of introducing mutations in the nascent DNA strand. A recent study has shown that the N-terminal sequences of the nuclear translesion polymerases Rev1p and Pol zeta can direct GFP to the mitochondrial compartment of Saccharomyces cerevisiae. We have investigated the role of these polymerases in mitochondrial mutagenesis. Our analysis of mitochondrial DNA point mutations, microsatellite instability, and the spectra of mitochondrial mutations indicate that these translesion polymerases function in a less mutagenic pathway in the mitochondrial compartment than they do in the nucleus. Mitochondrial phenotypes resulting from the loss of Rev1p and Pol zeta suggest that although these polymerases are responsible for the majority of mitochondrial frameshift mutations, they do not greatly contribute to mitochondrial DNA point mutations. Analysis of spontaneous mitochondrial DNA point mutations suggests that Pol zeta may play a role in general mitochondrial DNA maintenance. In addition, we observe a 20-fold increase in UV-induced mitochondrial DNA point mutations in rev deficient strains. Our data provides evidence for an alternative damage tolerance pathway that is specific to the mitochondrial compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号