首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To evaluate the potential of enzyme cocktails produced by five filamentous fungi to supplement the industrial cellulase cocktail, Celluclast 1.5L, in order to improve the efficiency of saccharification.

Results

The fungi were cultivated on wheat bran and the resulting supernatants were combined with Celluclast in enzymatic hydrolysis experiments to test their ability to hydrolyze wheat bran and five cellulose-rich substrates. The supernatant showing the best performance was that from an Aspergillus niger cellulase mutant. The addition of β-glucosidase only to the Celluclast cocktail was not as beneficial.

Conclusion

Supplementing commercial cocktails with enzymes from carefully selected fungi may result in significantly more efficient saccharification of lignocellulosic materials. Furthermore, such an approach could lead to the identification of novel enzyme activities crucial for saccharification.
  相似文献   

2.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

3.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

4.

Introduction

While the evolutionary adaptation of enzymes to their own substrates is a well assessed and rationalized field, how molecules have been originally selected in order to initiate and assemble convenient metabolic pathways is a fascinating, but still debated argument.

Objectives

Aim of the present study is to give a rationale for the preferential selection of specific molecules to generate metabolic pathways.

Methods

The comparison of structural features of molecules, through an inductive methodological approach, offer a reading key to cautiously propose a determining factor for their metabolic recruitment.

Results

Starting with some commonplaces occurring in the structural representation of relevant carbohydrates, such as glucose, fructose and ribose, arguments are presented in associating stable structural determinants of these molecules and their peculiar occurrence in metabolic pathways.

Conclusions

Among other possible factors, the reliability of the structural asset of a molecule may be relevant or its selection among structurally and, a priori, functionally similar molecules.
  相似文献   

5.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

6.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

7.

Background

Inflammatory conditions are involved in the pathophysiology of cancer. Recent findings have revealed that excessive salt and fat intake is involved in the development of severe inflammatory reactions.

Methods

literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of high salt and fat intake in the induction of inflammatory reactions and their roles in the etiopathogenesis of cancer.

Results

The results indicate that high salt and fat intake can induce severe inflammatory conditions. However, various inflammatory conditions have been strongly linked to the development of cancer. Hence, high salt and fat intake might be involved in the pathogenesis of cancer progression via putative mechanisms related to inflammatory reactions.

Conclusion

Reducing salt and fat intake may decrease the risk of cancer.
  相似文献   

8.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

9.

Background

The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered.

Results

A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site.

Conclusions

Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW variation, could provide novel targets for genetic modification for improved biofuel feedstocks.
  相似文献   

10.

Introduction

The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.

Results

We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions.

Conclusion

Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.
  相似文献   

11.

Introduction

Improving feed utilization in cattle is required to reduce input costs, increase production, and ultimately improve sustainability of the beef cattle industry. Characterizing metabolic differences between efficient and non-efficient animals will allow stakeholders to identify more efficient cattle during backgrounding.

Objectives

This study used an untargeted metabolomics approach to determine differences in serum metabolites between animals of low and high residual feed intake.

Methods

Residual feed intake was determined for 50 purebred Angus steers and 29 steers were selected for the study steers based on low versus high feed efficiency. Blood samples were collected from steers and analyzed using untargeted metabolomics via mass spectrometry. Metabolite data was analyzed using Metaboanalyst, visualized using orthogonal partial least squares discriminant analysis, and p-values derived from permutation testing. Non-esterified fatty acids, urea nitrogen, and glucose were measured using commercially available calorimetric assay kits. Differences in metabolites measured were grouped by residual feed intake was measured using one-way analysis of variance in SAS 9.4.

Results

Four metabolites were found to be associated with differences in feed efficiency. No differences were found in other serum metabolites, including serum urea nitrogen, non-esterified fatty acids, and glucose.

Conclusions

Four metabolites that differed between low and high residual feed intake have important functions related to nutrient utilization, among other functions, in cattle. This information will allow identification of more efficient steers during backgrounding.
  相似文献   

12.

Background and aims

Mineralization of soil organic matter (SOM) constitutes a major carbon flux to the atmosphere. The carbon use efficiency (CUE) of the saprotrophic microorganisms mineralizing SOM is integral for soil carbon dynamics. Here we investigate how the CUE is affected by temperature, metabolic conditions, and the molecular complexity of the substrate.

Methods

We incubated O-horizon soil samples (with either 13C–glucose or 13C–cellulose) from a boreal coniferous forest at 4, 9, 14, and 19 °C, and calculated CUEs based on the amount of 13C–CO2 and 13C–labelled microbial biomass produced. The effects of substrate, temperature, and metabolic conditions (representing unlimited substrate supply and substrate limitation) on CUE were evaluated.

Results

CUE from metabolizing glucose was higher as compared to cellulose. A slight decrease in CUE with increasing temperature was observed in glucose amended samples (but only in the range 9–19 °C), but not in cellulose amended samples. CUE differed significantly with metabolic conditions, i.e. CUE was higher during unlimited growth conditions as compared to conditions with substrate limitation.

Conclusions

We conclude that it is integral to account for both differences in CUE during different metabolic phases, as well as complexity of substrate, when interpreting temperature dependence on CUE in incubation studies.
  相似文献   

13.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

14.

Background

Recent studies show that bile acids are involved in glucose and energy homeostasis through activation of G protein coupled membrane receptor (TGR5) and farnesoid X receptor (FXR). A few researches have explored changes of TGR5 and FXR in animals with impaired glucose regulation. This study aimed to observe changes of plasma total bile acids (TBA), glucagon-like-peptide 1 (GLP-1), fibroblast growth factor 15 (FGF15), intestinal expressions of TGR5 and FXR, and correlations between them in rats with glucose intolerance.

Methods

Besides plasma fasting glucose, lipid, TBAs, alanine transaminase (ALT), active GLP-1(GLP-1A) and FGF15, a postprandial meal test was used to compare responses in glucose, insulin and GLP-1A among groups. The expressions of TGR5 and FXR in distal ileum and ascending colon were quantified by real-time PCR and western blot.

Results

TGR5 expression was significantly decreased in distal ileum in DM group compared to other groups, and TGR5 and FXR expressions in ascending colon were also decreased in DM group compared to other groups. Correlation analysis showed correlations between TBA and GLP-1A or FGF15. GLP-1A was correlated with TGR5 mRNA expression in colon, and FGF15 was correlated with FXR mRNA expression in colon.

Conclusions

These results indicates that bile acid-TGR5/FXR axis contributes to glucose homeostasis.
  相似文献   

15.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

16.

Introduction

Metabolomics analysis depends on the identification and validation of specific metabolites. This task is significantly hampered by the absence of well-characterized reference standards. The one-carbon carrier 10-formyltetrahydrofolate acts as a donor of formyl groups in anabolism, where it is a substrate in formyltransferase reactions in purine biosynthesis. It has been reported as an unstable substance and is currently unavailable as a reference standard for metabolomics analysis.

Objectives

The current study was undertaken to provide the metabolomics community thoroughly characterized 10-formyltetrahydrofolate along with analytical methodology and guidelines for its storage and handling.

Methods

Anaerobic base treatment of 5,10-methenyltetrahydrofolate chloride in the presence of antioxidant was utilized to prepare 10-formyltetrahydrofolate.

Results

Pure 10-formyltetrahydrofolate has been prepared and physicochemically characterized. Conditions toward maintaining the stability of a solution of the dipotassium salt of 10-formyltetrahydrofolate have been determined.

Conclusion

This study describes the facile preparation of pure (>90%) 10-formyltetrahydrofolate, its qualitative physicochemical characterization, as well as conditions to enable its use as a reference standard in physiologic samples.
  相似文献   

17.

Introduction

In the past 20+ years, several studies of bovine embryo production showed how the ratio of male to female embryos changes if embryos are made in vivo or in vitro. It is known that in in vitro systems, the sex ratio is in favor of males when there are high levels of glucose, and favors females when the principal energetic substrate is one other than glucose, like citrate.

Objectives

The aim of this study was to evaluate the embryo metabolism during three important periods of in vitro development: the early development (from day 1 until day 3), the middle of culture (day 3 until day 5), and later development (day 5 until day 7).

Methods

To obtain this information we evaluated the spent medium from each time period by 1H NMR.

Results

Our results confirm that embryo metabolism is different between sexes. The new information obtained by identifies markers that we can use to predict the embryo sex.

Conclusion

These results open a new, non-invasive method to evaluate sex of the embryos before the transfer. In the first period of embryo culture, valine concentration is good indicator (66.7% accurate), while in the last phase of culture, pyruvate depletion is the best marker (64% accurate) to evaluate the sex of the embryo.
  相似文献   

18.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

19.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

20.

Background

For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work was to combine inhibitor degradation, xylitol fermentation, and ethanol production using a single yeast strain.

Results

A new process of integrated aerobic xylitol production and anaerobic ethanol fermentation using non-detoxified acid pretreated corncob by Candida tropicalis W103 was proposed. C. tropicalis W103 is able to degrade acetate, furfural, and 5-hydromethylfurfural and metabolite xylose to xylitol under aerobic conditions, and the aerobic fermentation residue was used as the substrate for ethanol production by anaerobic simultaneous saccharification and fermentation. With 20% substrate loading, furfural and 5-hydroxymethylfurfural were degraded totally after 60 h aerobic incubation. A maximal xylitol concentration of 17.1 g l-1 was obtained with a yield of 0.32 g g-1 xylose. Then under anaerobic conditions with the addition of cellulase, 25.3 g l-1 ethanol was produced after 72 h anaerobic fermentation, corresponding to 82% of the theoretical yield.

Conclusions

Xylitol and ethanol were produced in Candida tropicalis W103 using dual-phase fermentations, which comprise a changing from aerobic conditions (inhibitor degradation and xylitol production) to anaerobic simultaneous saccharification and ethanol fermentation. This is the first report of integrated xylitol and ethanol production from non-detoxified acid pretreated corncob using a single microorganism.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号