首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.  相似文献   

2.
Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in leopard sharks, Triakis semifasciata. We used three-dimensional kinematics and digital particle image velocimetry (DPIV) to quantify pectoral fin function in five white-spotted bamboo sharks, C. plagiosum, during four behaviors: holding station on the substrate, steady horizontal swimming, and rising and sinking during swimming. During benthic station-holding in current flow, bamboo sharks decrease body angle and adjust pectoral fin angle to shed a clockwise fluid vortex. This vortex generates negative lift more than eight times that produced during open water vertical maneuvering and also results in an upstream flow that pushes against the posterior surface of the pectoral fin to oppose drag. In contrast, there is no evidence of significant lift force in the wake of the pectoral fin during steady horizontal swimming. The pectoral fin is held concave downward and at a negative dihedral angle during steady horizontal swimming, promoting maneuverability rather than stability, although this negative dihedral angle is much less than that observed previously in sturgeon and leopard sharks. During sinking, the pectoral fins are held concave upward and shed a clockwise vortex with a negative lift force, while in rising the pectoral fin is held concave downward and sheds a counterclockwise vortex with a positive lift force. Bamboo sharks appear to sacrifice maneuverability for stability when locomoting in the water column and use their relatively flexible fins to generate strong negative lift forces when holding position on the substrate and to enhance stability when swimming in the water column.  相似文献   

3.
4.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

5.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

6.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

7.
Body Form and Locomotion in Sharks   总被引:1,自引:1,他引:0  
A revised interpretation of the mode of action of the heterocercaltail in sharks shows that the upturned tail axis tends to producea thrust directed downwards behind the centre of balance ofthe fish and thus gives a moment turning the head upwards. Thisis countered in two ways—by the rotation of the tail alongits longitudinal axis during each lateral beat, and throughthe action of the ventral hypochordal lobe. The shape of thetail and the mode of action of the tail in all sharks so farconsidered reflects a balance between these three factors, inall of them the net effect being the production of a forwardthrust from the tail that passes directly through the centreof balance of the fiish. There is normally therefore no tendencyfor the fish to turn around the centre of balance in a sagittalplane but there is a net sinking effect that is countered bythe planning effect of the pectoral fins and the ventral surfaceof the head. A study of 56 species of sharks shows that the tail is constructedaccording to a remarkably consistent common plan, the extremesbeing the high angled rather symmetrical tail of pelagic sharkssuch as hums, Lamna and Rhincodon and the straight tails ofbenthic sharks such as Ginglymostoma in which a ventral hypochordallobe is absent. When the general body shape of sharks, includingthe position of insertion of the median and paired fins andthe pattern of growth of fin surface areas is considered, theuniformity of the shark body plan and locomolor function isfurther emphasised. Four patterns of body form in sharks are recognised: 1) Thefast swimming pelagic sharks and the whale sharks have a tailwith a high aspect ratio, a conical head, a lateral fluke onthe caudal peduncle. 2) The generalised sharks typified by theCarcharhinidae, have lower heterocercal angles, a flattenedventral surface on the head and lack the caudal fluke. 3) Thedemersal sharks typified by the catsharks (Scyliorhinidae) havea very low, almost straight tail. The ventral hypochordal lobeis absent and the first dorsal fin is posterior in position.4) The squalomorph sharks are distinct in the absence of theanal fin, presence of a marked epicaudal lobe in the tail andoften an elevated insertion of the pectorals. The anal and second dorsal fins are always the smallest finsand the pectorals grow at the fastest rate. In general thereis an inverse relationship between size and rale of growth ofall fins and the ventral surface of the head. In hammerheadsthe growth data confirms that the head has a significant planingaction in swimming. The pectoral, second dorsal and anal finsshow an extreme constancy of position of insertion in all sharksstudied. The locomotor mechanism of sharks is adapted for anefficient cruising swimming but at the same time, the potentialinstability in the sagittal plan allows for the production ofturning moments that are used in attack and feeding.  相似文献   

8.
WithAcanthodes bourbonensis n.sp. another acanthodian from Lower Permian basins of Europe is described. The new species is similar toAcanthodes gracilis (Beyrich) from Silesia (Poland), but it differs from this and all other species of the genus in the development of the pectoral fins, dorsal fin, anal fin and caudal fin. In pectoral fins, dorsal and anal fin there are different ceratotrichia as supporting elements and pectoral fins are attaching along a row of oblonged large scales. In the caudal fin there is an epichoral appendix first found byHeyler (1969).  相似文献   

9.
The median fins of fishes are key features of locomotor morphology which function as complex control surfaces during a variety of behaviors. However, very few studies have experimentally assessed median fin function, as most workers focus on axial structures. In particular, the dorsal fin of many teleost fishes possesses both spiny anterior and soft posterior portions which may function separately during locomotion. We analyzed the function of the soft region of the dorsal fin and of the dorsal inclinator (Di) muscles which are the primary muscles responsible for lateral flexion. We used electromyography to measure in vivo Di activity, as well as activity of the red myomeric muscles located at a similar longitudinal position. We quantified motor patterns during four locomotor behaviors: braking and three propulsive behaviors (steady swimming, kick and glide swimming, and C-starts). During the three propulsive swimming behaviors, the timing of Di activity was more similar to that of ipsilateral red myomeric muscle rather than to contralateral myomeric activity, whereas during braking the timing of activity of the Di muscles was similar to that of the contralateral myomeric musculature. During the three propulsive behaviors, when the Di muscles had activity, it was consistent with the function of stiffening the soft dorsal fin to oppose its tendency to bend as a result of the body being swept laterally through the water. In contrast, activity of the Di muscles during braking was consistent with the function of actively flexing the soft dorsal fin towards the side of the fish that had Di activity. Activity of the Di muscles during steady speed swimming was generally sufficient to resist lateral bending of the soft dorsal fin, whereas during high speed kick and glide swimming and C-starts, Di activity was not sufficient to resist the bending caused by resistive forces imposed by the water. Cumulative data from all four behaviors suggest that the Di muscles can be activated independently relative to the myomeric musculature rather than having a single phase relationship with the myomeric muscle common to all of the observed behaviors. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.  相似文献   

11.
Summary Puffer fish (Tetraodon steindachneri) can execute precise maneuvers due to their highly specialized mode of propulsion. In the conventional locomotion exemplified by the goldfish (Carassius auratus), the fish thrusts are generated by lateral beating of the caudal fin. In contrast, the puffer generates its propulsive force by very rapid undulating movements of the pectoral, dorsal and anal fins. The fine structure of the fin muscles is identical in the two species of fishes, despite the differences in fin movement; cytologically, the fibers are intermediate between those of red and of white muscle. On the other hand, both the fusion frequency and the number of motor endplates are considerably higher in the fin muscles of the puffer than in those of the goldfish.  相似文献   

12.
Transverse sections of the skin in the dorsal fin of the white shark, Carcharodon carcharias, tiger shark, Galeocerdo cuvier, and spotted raggedtooth shark, Carcharias taurus, show large numbers of dermal fiber bundles, which extend from the body into the fin. The bundles are tightly grouped together in staggered formation (not arranged in a straight line or in rows). This arrangement of dermal fibers gives tensile strength without impeding fiber movement. Tangential sections indicate that the fibers in all three species are strained and lie at angles in excess of 60 degrees . Of the three species investigated the dermal fibers in C. carcharias are the most densely concentrated and extend furthest distally along the dorsal fin. The overall results indicate that the dorsal fin of C. carcharias functions as a dynamic stabilizer and that the dermal fibers are crucial to this role. The fibers work like riggings that stabilize a ship's mast. During fast swimming, when the problems of yaw and roll are greatest, hydrostatic pressure within the shark increases and the fibers around the body, including in the dorsal fin, become taut, thereby stiffening the fin. During slow swimming and feeding the hydrostatic pressure is reduced, the fibers are slackened, and the muscles are able to exert greater bending forces on the fin via the radials and ceratotrichia. In C. carcharias there is a trade-off for greater stiffness of the dorsal fin against flexibility.  相似文献   

13.
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three‐dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro‐CT scanning, gel‐based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro‐CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver‐like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond‐like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading‐to‐trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns.  相似文献   

14.
In addition to forward undulatory swimming, Gymnarchus niloticus can swim via undulations of the dorsal fin while the body axis remains straight; furthermore, it swims forward and backward in a similar way, which indicates that the undulation of the dorsal fin can simultaneously provide bidirectional propulsive and maneuvering forces with the help of the tail fin. A high-resolution Charge-Coupled Device (CCD) imaging camera system is used to record kinematics of steady swimming as well as maneuvering in G. niloticus. Based on experimental data, this paper discusses the kinematics (cruising speed, wave speed, cycle frequency, amplitude, lateral displacement) of forward as well as backward swimming and maneuvering. During forward swimming, the propulsive force is generated mainly by undulations of the dorsal fin while the body axis remains straight. The kinematic parameters (wave speed, wavelength, cycle frequency, amplitude) have statistically significant correlations with cruising speed. In addition, the yaw at the head is minimal during steady swimming. From experimental data, the maximal lateral displacement of head is not more than 1% of the body length, while the maximal lateral displacement of the whole body is not more than 5% of the body length. Another important feature is that G. niloticus swims backwards using an undulatory mechanism that resembles the forward undulatory swimming mechanism. In backward swimming, the increase of lateral displacement of the head is comparatively significant; the amplitude profiles of the propulsive wave along the dorsal fin are significantly different from those in forward swimming. When G. niloticus does fast maneuvering, its body is first bent into either a C shape or an S shape, then it is rapidly unwound in a travelling wave fashion. It rarely maneuvers without the help of the tail fin and body bending.  相似文献   

15.
Bomb radiocarbon has previously been used to validate the age of large pelagic sharks based on incorporation into vertebrae. However, not all sharks produce interpretable vertebral growth bands. Here we report the first application of bomb radiocarbon as an age validation method based on date-specific incorporation into spine enamel. Our results indicate that the dorsal spines of spiny dogfish, Squalus acanthias, recorded and preserved a bomb radiocarbon pulse in growth bands formed during the 1960s with a timing which was very similar to that of marine carbonates. Using radiocarbon assays of spine growth bands known to have formed in the 1960s and 1970s as a dated marker, we confirm the validity of spine enamel growth band counts as accurate annual age indicators to an age of at least 45 year. Radiocarbon incorporation into northeast Atlantic dogfish spines occurred in similar years as those in the northwest Atlantic and northeast Pacific, although the amount of radiocarbon differed in keeping with the radiocarbon content of the different water masses. Published reports suggesting that Pacific dogfish are longer lived and slower growing than their Atlantic counterparts appear to be correct, and are not due to errors in interpreting the spine growth bands. Radiocarbon assays of fin spine enamel appears to be well suited to the age validation of sharks with fin spines which inhabit the upper 200 m of the ocean.  相似文献   

16.
The dorsal and pectoral fins are the primary locomotor organs in seahorses (Hippocampus) and pipefish (Syngnathus). The small dorsal fins beat at high oscillatory frequencies against the viscous medium of water. Both species are able to oscillate their fins at frequencies likely exceeding the point of flicker fusion for their predators, thus enhancing their ability to remain cryptic. High-speed video demonstrated that seahorse dorsal fins beat at 30-42 Hz, while pipefish dorsal fins oscillate at 13-26 Hz. In both species, the movement of the fin is a sinusoidal wave that travels down the fin from anterior to posterior. Mechanical properties of seahorse and pipefish dorsal fin muscles were tested in vitro by the work loop method. Maximum isometric stress was 176.1 kN/m(2) in seahorse and 111.5 kN/m(2) in pipefish. Work and power output were examined at a series of frequencies encompassing the range observed in vivo, and at a number of strains (percent length change during a contractile cycle) within each frequency. At a given strain, work per cycle declined with increasing frequency, while power output rose to a maximum at an intermediate frequency and then declined. Frequency and strain interacted in a complex fashion; optimal strain was inversely related to cycle frequency over most of the frequency range tested. Seahorse dorsal fin muscle was able to generate positive work at higher cycling frequencies than pipefish. Both species produced positive work at higher frequencies than have been reported for axial and fin muscles from other fish.  相似文献   

17.
Body form can change across ontogeny, and can influence how animals of different sizes move and feed. Scaling data on live apex predatory sharks are rare and, therefore, we examined patterns of scaling in ontogenetic series of four sympatric shark species exhibiting a range of sizes, ecologies and life histories (tiger, bull, blacktip, and nurse shark). We evaluated 13 linear morphological variables and two areas (caudal and dorsal) that could influence both animal condition and locomotor performance. These measurements included dimensions of the dorsal, pectoral, and caudal fins, as well as several dimensions of body circumference, and of the head. For all four species, the body axis (eye‐to‐eye, lateral span, frontal span, proximal span) scaled close to isometry (expected slope of 1.0). The two largest sharks (tiger and bull sharks) also showed significant negative allometry for elements of the caudal fin. We found significant negative allometry in the lengths of the upper lobe of the caudal fin (caudal fin 1) and the overall height of the caudal fin (caudal fin 2) in tiger and bull sharks, with slopes ranging from about 0.60 to 0.73. Further, tiger sharks showed negative allometry in caudal fin area. These results suggest that in terms of overall body dimensions, small sharks are roughly geometrically similar to large sharks, at least within the species we examined. However, juvenile tiger (and to a lesser extent bull sharks) are notable in having proportionately larger caudal fins compared to adult sharks. As the caudal fin contributes to generating thrust during forward locomotion, this scaling implies differences among adult and juvenile sharks in locomotor ability. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 126–135.  相似文献   

18.
Adaptation of rainbow fish to lake and stream habitats   总被引:3,自引:0,他引:3  
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in lakes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (Ucrit) than stream conspecifics. In M. eachamensis, habitat affected Ucrit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster Ucrit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in Ucrit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and Ucrit phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.  相似文献   

19.
We make a thorough kinematic comparison of forward and backward swimming and maneuvering on a self-propelled robot platform that uses sub-carangifbrm swimming as the primary propulsor. An improved Central Pattern Generator (CPG) model allowing free adjustment of phase relationship and directional bias is employed to achieve flexible swimming and smooth transition. Considering the characteristics of forward swimming in carangiform fish and backward swimming in anguilliform fish, various backward swimming patterns for the sub-carangiform robotic fish are suitably created by reversing the direction of propagating propulsive waves. Through a combined use of the CPG control and closed-loop swimming direction control strategy, flexible and precise turning maneuvers in both forward and backward swimming are implemented and compared. By contrast with forward swimming, backward swimming requires a higher frequency or an increased lateral displacement to reach the same relative swimming speed. Noticeably, the phase difference shows a greater impact on forward swimming than on backward swimming. Our observations also indicate that the robotic fish achieves a larger turning rate in forward maneuvering than in backward maneuvering, yet these two maneuvers display comparable turning precision.  相似文献   

20.
The lateral fins of cuttlefish and squid consist of a tightly packed three-dimensional array of musculature that lacks bony skeletal support or fluid-filled cavities for hydrostatic skeletal support. During swimming and manoeuvring, the fins are bent upward and downward in undulatory waves. The fin musculature is arranged in three mutually perpendicular planes. Transverse muscle bundles extend parallel to the fin surface from the base of the fin to the fin margin. Dorso-ventral muscle bundles extend from dorsal and ventral connective tissue fasciae to a median connective tissue fascia. A layer of longitudinal muscle bundles is situated adjacent to both the dorsal and ventral surface of the median fascia. The muscle fibres are obliquely striated and include a core of mitochondria. A zone of muscle fibres with a more extensive core of mitochondria is present in both the dorsal and the ventral transverse muscle bundles. It is hypothesized that these muscle masses include two fibre types with different aerobic capacity. A network of connective tissue fibres is present in the transverse and dorso-ventral muscle masses. These fibres, probably collagen, are oriented at 45 to the long axes of the transverse and dorsoventral muscle fibres in transverse planes.
A biomechanicayl analysis of the morphology suggests that support for fin movements is provided by simultaneous contractile activity of muscles of specific orientations in a manner similar to that proposed for other 'muscular-hydrostats'. The musculature therefore provides both the force and support for movement. Connective tissue fibres may aid in providing support and may also serve for elastic energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号