首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the early Caenorhabditis elegans embryo, a rapid succession of cell divisions, many of them asymmetric, form blastomeres that differ in size, cell cycle duration and developmental potential. These early cell cycles are highly regulated and controlled by maternally contributed products. We describe here a novel gene, mel-47, that is required maternally for the proper execution of the early cell cycles. mel-47(yt2) mutants arrest as completely disorganized embryos with 50–80 cells of variable size. The earliest defects we found are changes in the absolute and relative duration of the very early embryonic cell cycles. In particular, the posterior cell of the two-cell embryo divides late compared with its anterior sister. Frequently the daughter cells remain connected through chromatin bridges after the early cleavage divisions indicating that the chromosomes do not segregate properly. The cell cycle delay can be suppressed by knocking down a DNA replication check point. Therefore we propose that mel-47 is required for proper DNA replication in the early embryo. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
Four-cell stage mouse blastomeres have different developmental properties   总被引:3,自引:0,他引:3  
Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.  相似文献   

3.
Reproductive cell specification during Volvox obversus development   总被引:1,自引:0,他引:1  
Asexual spheroids of the genus Volvox contain only two cell types: flagellated somatic cells and immotile asexual reproductive cells known as gonidia. During each round of embryogenesis in Volvox obversus, eight large gonidial precursors are produced at the anterior extremity of the embryo. These cells arise as a consequence of polarized, asymmetric divisions of the anteriormost blastomeres at the fourth through nine cleavage cycles, while all other blastomeres cleave symmetrically to yield somatic cell precursors. Blastomeres isolated from embryos at any point between the 2-cell and the 32-cell stage cleaved in the normal pattern and produced the same complement and spatial distribution of cell types as they would have in an intact embryo. This result indicates that intrinsic features control the cleavage patterns and developmental potentials of blastomeres, and rules out any significant role for cell-cell interactions in gonidial specification. When substantial quantities of anterolateral cytoplasm were deleted from uncleaved gonidia or 4-cell stage blastomeres, the cell fragments frequently regulated and embryos were produced with the expected number of asymmetrically cleaving cells and gonidial precursors at their anterior ends. However, when anterior cytoplasm was deleted from 8-cell stage blastomeres, the depleted cells frequently failed to cleave asymmetrically and produced no gonidial precursors. Furthermore, when compression was used to reorient cleavage planes at the fourth division cycle, so that anterior cytoplasm was transmitted to more than the normal number of cells, those cells receiving a significant amount of such cytoplasm cleaved asymmetrically to produce supernumerary gonidial precursors. Together, these last two experiments indicate that blastomeres in the V. obversus embryo acquire (at least by the end of the third cleavage cycle) a polarized organization in which anterior cytoplasm plays a causal role in the process of reproductive-cell specification.  相似文献   

4.
Summary In Parascaris developmental commitment to the germ line and somatic lineages is indicated by the orientation of the mitotic spindle in blastomeres, the topology of cells in the embryo, and chromatin diminution in presomatic blastomeres. Using three different experimental techniques: transient pressure treatment, application of cytochalasin B, and isolation of blastomeres, we have succeeded in uncoupling several developmental processes during cleavage of P. univalens. The following results were obtained: (1) Following mitotic nondisjunction we observed identical behavior of all chromatids in each blastomere. Thus chromosome differentiation by differential replication does not occur. (2) Chromosome fragments obtained by pressure treatment of egg cells underwent chromatin diminution. Thus this process does not require an intact germ-line chromosome. However, chromosomes immobilized on a monopolar spindle did not undergo chromatin diminution. Thus diminution appears to require segregation of chromatids. (3) Blastomeres that completely lacked chromosomes as a result of mitotic nondisjunction underwent normal early cleavage divisions. (4) Pressure treatment or prolonged treatment with cytochalasin B caused egg cells or germ line blastomeres to lose their germ line quality, as deduced from the coincident occurrence of symmetrical (presomatic-like) cleavage and chromatin diminution. (5) Isolated blastomeres from 2-cell embryos, i.e. 1/2 blastomeres, usually cleaved according to their prospective fates in the whole embryo. However, in some partial embryos derived from such blastomeres, chromatin diminution was delayed for either one or two cleavage mitoses. An activation model as an alternative to a prelocalization model is presented, which can account for early blastomere topogenesis and chromatin diminution.  相似文献   

5.
The aim of this study was to investigate the fate of an additional female genome introduced to a dividing zygote. Maternal chromatin in the form of karyoplasts containing a metaphase II spindle were fused to zygotes blocked in anaphase or telophase of the first cleavage. Permanent preparations made 20-40 min after fusion at anaphase revealed that the donor maternal chromosomes had entered anaphase or telophase in 16 out of 18 cases. A further two groups of embryos that were fused at either anaphase or anaphase/telophase were cultured to the first division. Division occurred 50 min after fusion in both groups of embryos (86 and 85.1%, respectively), of which most divided to two cells (80 and 71.6% of total) and the remainder divided to three cells. About two thirds of two-cell embryos contained an extra nucleus in one blastomere. Nuclei containing donor maternal chromosomes reached a similar size to recipient nuclei in 68% of embryos derived from anaphase-blocked zygotes, in contrast to 31.1% of embryos derived from anaphase/telophase-blocked embryos. Replication of DNA in donor nuclei closely followed the timing and intensity of that in control embryos. When fixed 24 hr after fusion, one third of embryos were still at the two-cell stage, with one or both blastomeres showing a single metaphase plate of the second cleavage. In the remaining embryos, three or four cells were present, some containing two nuclei. Blastocysts developed in 50% of fused embryos and three young were born after transfer of cleaving hybrid embryos to recipients. Chromosome preparations from bone marrow of the young contained 3-4 tetraploid metaphase plates per several hundred plates counted compared with none in control embryos. In conclusion, additional maternal chromosomes can be introduced at the late-dividing zygote and join the embryonic cell cycles during subsequent divisions. This method may provide a useful approach for studying changes specific to the maternal genome during early cell cycles of the mammalian embryo.  相似文献   

6.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

7.
The mechanism of unequal cleavage is one of the most intriguing subjects in cell biology. Previous studies of unequal cleavage have focused on a limited number of organisms such as yeasts, nematodes, sea urchins and annelids. The cleavage pattern of the ascidian embryo is invariant. In the ascidian embryo, the posterior-most blastomeres divide unequally in three successive cleavages. In the present study, it was shown that the ascidian embryo provides another good experimental system with which to analyze the mechanism of unequal cleavage. A novel structure, designated as CAB (centrosome-attracting body), which was found specifically in the unequally cleaving blastomeres was described. In the course of unequal cleavages, first, a thick microtubule bundle appeared between CAB and one of the centrosomes. Then with the shortening of the microtubule bundle, the nucleus with the centrosome was drawn toward CAB, situated at the posterior cortex of the blastomere. Finally, a cleavage furrow formed in the middle of the asymmetrically located mitotic apparatus and produced two blastomeres of different size, generating a smaller cell that inherits CAB. The CAB seemed to play an essential role in the unequal cleavages in the ascidian embryo.  相似文献   

8.
The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at three-cell stage and cytokinesis only occurred in the blastomere containing DNA. The result of chromosome counting showed that the tetraploidization rate of B group was only 7%. To summarize what had been mentioned above, mechanisms on chromosome set doubling of tetraploid induction would be different with different initiation time of hydrostatic pressure treatment. Chromosome set doubling was mainly due to inhibition of the second mitosis when hydrostatic pressure treatment was performed at prometaphase. Otherwise, chromosome set doubling was mainly due to inhibition of the first nuclear division when hydrostatic pressure treatment was performed at anaphase. Induction efficiency of tetraploidization resulted from inhibition of the second cleavage was higher than which resulted from inhibition of the first nuclear division. This study was the first to reveal biological mechanisms on the two viewpoints of chromosome set doubling through effect of initiation time of hydrostatic pressure treatment on chromosome set doubling in tetraploid induction.  相似文献   

9.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   

10.
The chromatin structure of three cell types isolated from the 16-cell stage sea urchin embryo has been probed with micrococcal nuclease. In micromeres, the four small cells at the vegetal pole, the chromatin is found to be considerably more resistant to degradation by micrococcal nuclease than chromatin in the larger mesomere and macromere cells which undergo more cellular divisions and are committed to different developmental fates. The micromeres show an order of magnitude decrease in the initial digestion rate and a limit digest value which is one third that of the larger blastomeres; both observations are suggestive of the formation of a more condensed chromatin structure during the process of commitment, or as the rate of cell division decreases. The decreased sensitivity to nuclease for micromeres is similar to results reported for sperm and larval stages of development.  相似文献   

11.
During early embryogenesis of the nematode Parascaris univalens (2n=2) the processes of chromatin diminution and segregation of the germ and somatic cell lineages take place simultaneously. In this study we analyzed the nucleolar cycle in early embryos, both in germinal and somatic blastomeres, by means of silver staining and antibodies against the nucleolar protein fibrillarin. We observed an identical nucleolar cycle in both types of blastomeres, hence, the chromatin diminution process has no effect on the nucleolar cycle of somatic blastomeres. We report the existence of outstanding differences between this cycle and those previously reported during early embryogenesis of other species. There is a true nucleolar cycle in early embryos that shows a peculiar nucleolar disorganization at prophase, and a preferential localization of prenucleolar bodies only on the euchromatic regions during nucleologenesis. Moreover, fibrillarin does not form a perichromosomal sheath in metaphase or anaphase holocentric chromosomes, probably owing to their special centromeric organization. The number and location of nucleolus organizer regions (NORs) in the chromosomal complement have been determined using silver impregnation, chromomycin A3/distamycin A staining, and fluorescent in situ hybridization using an rDNA probe. There are only two NORs, one per chromosome, and these are lost in blastomeres after chromatin diminution. Moreover, the constant presence of two nucleoli in somatic blastomeres suggests that NORs are not affected during the fragmentation of euchromatic regions when this process occurs.  相似文献   

12.
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B.  相似文献   

13.
Aspects of the early lineages of blastomeres in the embryo of the zebrafish, Brachydanio rerio have been described. Because of the optical clarity of the embryo, lineages of selected cells can be followed directly by microscopy through many cell divisions. Also, it is shown here that the fluorescent molecules fluorescein-dextran and rhodamine-horseradish peroxidase can be used as cell lineage tracers, marking the clonal progeny of founding blastomeres. The labeled cells can be easily visualized in the live embryo, and utilizing a sensitive video camera to amplify fluorescence, the same clone may be examined repeatedly while the cells divide and migrate. Cells that descend from a single blastomere remain closely associated together through the end of the blastula stage. At the time when epiboly begins (early gastrula) cells in the labeled clone scatter and become dispersed among unlabeled cells. It has been observed that there is no invariant mapping of the embryo's midline (determined by the position of the embryonic shield in the gastrula) with respect to the early planes of cleavage. This finding shows that in the zebrafish the region of the embryo that a cell will occupy is not specified by the cell's early ancestory.  相似文献   

14.
Summary The control of nuclear division and migration was studied in time-lapse films of the multinucleate egg cell of a gall midge by experimental alterations of the mitotic pattern. During each cleavage cycle, a wave of randomly oriented saltations of yolk particles (WROS) is seen to travel through the ooplasm. This wave proved to be an indispensable prerequisite for the accompanying anaphase wave and for the activation of the nuclear migration cytasters: WROS cycles can occur autonomously without cleavage nuclei being present, but there is no anaphase without a WROS passing the dividing nucleus. WROSs and mitotic waves can be inverted, and the WROS cycles and the cleavage cycles can be desynchronized by temperature grandients or by locally impaired gas exchange. If a nucleus is not ready for anaphase when met by a WROS, it will only divide in the course of the next WROS. WROSs thus indicate autonomous anaphase-triggering waves governing the cleavage divisions. Rhythmic ooplasmic movements continue even if the WROSs as well as the nuclear divisions are inhibited by colchinine. The characteristics of the WROSs support the hypothesis that each of them is the visible effect of a wave of calcium release (similar to that established in vertebrate eggs) which acts locally on the microtubular system and may continue even if the WROSs are suppressed. The correlations between a possible calcium release, WROS activity, microtubule disassembly and nuclear cycle are discussed.  相似文献   

15.
Patterns of cleavage and cytoplasmic connections between blastomeres in the embryo of the zebrafish, Brachydanio rerio have been described. The cell division pattern is often very regular; in many embryos a blastomere's lineage may be ascertained from its position in the cluster through the 64-cell stage. At the 5th cleavage, however, significant variability in pattern is observed, and alternative patterns of the 5th cleavage are described. The early cleavages are partial, incompletely separating blastomeres from the giant yolk cell. The tracer fluorescein-dextran (FD) was injected into blastomeres to learn the extent of the cytoplasmic bridging. It was observed that until the 10th cleavage, blastomeres located along the blastoderm margin maintain cytoplasmic bridges to the yolk cell. Beginning with the 5th cleavage, FD injected into a nonmarginal blastomere either remains confined to the injected cell, or if the injection was early in the cell cycle, the tracer spreads to the cell's sibling, through a bridge persisting from the previous cleavage. On the other hand, injected Lucifer yellow spreads, presumably via gap junctions, widely among blastomeres in a pattern unrelated to lineage.  相似文献   

16.
Analysis of the third and fourth cell cycles of mouse early development   总被引:1,自引:0,他引:1  
The third (4-cell) and fourth (8-cell) cell cycles of early mouse development have been analysed in populations of blastomeres synchronized to the preceding cleavage division. DNA content was measured microdensitometrically. The entry of blastomeres into these cell cycles showed considerable heterogeneity both within and between individual embryos. This heterogeneity was greater in the fourth than in the third cell cycle. The component phases of the third cell cycle were estimated as G1 = 1 h, S = 7 h, and G2 + M = 2-5 h, and those of the fourth cell cycle as G1 = 2 h, S = 7 h, and G2 + M = 1-3 h.  相似文献   

17.
Summary We have examined the persistence of midbody channels during the second, third, and fourth cleavage cycles of the mouse using immunofluorescence to map the distribution of midbody microtubule bundles in intact embryos. Electron microscopy showed these bundles to be a characteristic feature of midbodies throughout the interphase period. In recently-divided embryos at each cleavage stage the number of midbodies was half the number of blastomeres, and declined towards zero as the next cleavage approached. This indicated to us that the only midbodies present in each stage were those which had arisen in the immediately-preceding division. Of those blastomeres which were in mitosis at the time of fixation, less than 4% were connected via a midbody to another blastomere, demonstrating that persistence of midbodies beyond a single cleavage cycle is a rare event. We conclude that midbody channels in our embryos are likely to connect only pairs of sister blastomeres because midbodies do not persist through multiple cleavage cycles. Midbody channels cannot, therefore, be regarded as providing extensive cell coupling in advance of the onset of gap junctional communication.  相似文献   

18.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

19.
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.

During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.  相似文献   

20.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号