首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.  相似文献   

2.
In plant innate immunity, the surface‐exposed leucine‐rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen‐associated molecular patterns EF‐Tu and flagellin, respectively. We identified the Arabidopsis stromal‐derived factor‐2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER‐quality control (ER‐QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER‐QC components by EFR and FLS2 could be linked to N‐glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co‐translational N‐glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2–ERdj3B–BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER‐QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER‐QC and N‐glycosylation components by two closely related receptors.  相似文献   

3.
The signal recognition particle (SRP) is a key component of the cellular machinery that couples the ongoing synthesis of proteins to their proper localization, and has often served as a paradigm for understanding the molecular basis of protein localization within the cell. The SRP pathway exemplifies several key molecular events required for protein targeting to cellular membranes: the specific recognition of signal sequences on cargo proteins, the efficient delivery of cargo to the target membrane, the productive unloading of cargo to the translocation machinery and the precise spatial and temporal coordination of these molecular events. Here we highlight recent advances in our understanding of the molecular mechanisms underlying this pathway, and discuss new questions raised by these findings.  相似文献   

4.
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin.  相似文献   

5.
Binding of interleukin-8 (IL-8) to glycosaminoglycans (GAGs) on the surface of endothelial cells is crucial for the recruitment of neutrophils to an inflammatory site. Deriving structural knowledge about this interaction from in silico docking experiments has proved difficult because of the high flexibility and the size of GAGs. Therefore, we developed a docking method that takes into account ligand and protein flexibility by running approximately 15,000 molecular dynamics simulations of the docking event with different initial orientations of the binding partners. The method was shown to successfully reproduce the residues of basic fibroblast growth factor involved in GAG binding. Docking of a heparin hexasaccharide to IL-8 gave an interaction interface involving the basic residues His18, Lys20, Arg60, Lys64, Lys67, and Arg68. By subjecting IL-8 single-site mutants, in which these amino acids were replaced by alanine, to isothermal fluorescence titrations, the affinities for heparin were determined to be wtIL-8 > IL-8(H18A) > IL-8(R68A) > IL-8(K67A) > IL-8(K20A) > IL-8(R60A) > IL-8(K64A). A comparison with the binding energies calculated from the model revealed high values for wtIL-8 and the H18A mutant and significantly lower but similar energies for the remaining mutants. Connecting the two fully sulfated hexasaccharides bound to each of the two IL-8 monomers in the dimeric chemokine by an N-acetylated dodecasaccharide gave a complex structure in which the GAG molecule aligned in a parallel fashion to the N-terminal alpha-helices of IL-8 like a horseshoe. A 5-ns molecular dynamics simulation of this complex confirmed its structural stability and revealed a reorientation in both binding sites where a disaccharide became the central binding unit. Isothermal fluorescence titration experiments using differently sulfated heparin disaccharides confirmed that a single disaccharide can indeed bind IL-8 with high affinity.  相似文献   

6.
K T O'Neil  W F DeGrado 《Proteins》1989,6(3):284-293
Calmodulin is known to bind target enzymes and basic, amphiphilic peptides in a Ca2(+)-dependent manner. Recently, we introduced a photoaffinity label, p-benzoylphenylalanine (Bpa), into the sequence of a model, alpha-helical, calmodulin-binding peptide. When the Bpa residue was introduced at the third position of the peptide, Met-144 on the C-terminal domain of calmodulin was labeled, whereas when the photolabel was placed at the thirteenth position, Met-71 on the N-terminal domain was labeled. Assuming that both peptides bind in similar orientations, these results are not consistent with the crystal structure of calmodulin, in which the domains are held at a significant distance from one another by a long alpha-helical segment. To test the assumption that both peptides bind in similar orientations, we have synthesized a calmodulin-binding peptide with the photolabel in both the third and the thirteenth positions. Upon photolysis, this peptide forms a cross-link between Met-71 and Met-124 on the N- and C-terminal domains, respectively. Furthermore, a peptide with a Bpa in the thirteenth position and a Trp residue in the third position was also synthesized. After photocross-linking the Bpa residue of this peptide to Met-71 of calmodulin, it could be shown that the fluorescence properties of the Trp residue were consistent with its side chain being buried in a hydrophobic pocket on the C-terminal domain of calmodulin. These data indicate that, when complexed with basic, amphiphilic peptides, calmodulin can adopt a conformation in which its two domains are significantly closer than in the crystal structure of the uncomplexed protein.  相似文献   

7.
【背景】研究珊瑚-细菌、虫黄藻-细菌的相互作用是解析珊瑚健康机理的关键。对珊瑚共附生细菌进行稳定荧光标记有助于原位观察细菌与虫黄藻或珊瑚的相互作用。当前,对于野生型珊瑚共附生细菌遗传操作体系的研究有限,限制了对细菌与珊瑚、虫黄藻原位互作模式的揭示。【目的】建立一种适合专性海洋细菌的遗传操作体系,利用其对珊瑚组织来源细菌进行绿色荧光蛋白标记,用于研究标记菌株与虫黄藻的相互作用。【方法】通过电穿孔的方式将构建好的广宿主重组质粒转入供体菌(Escherichia coli WM3064),然后将供体菌与添加海水才可以生长的受体菌SCSIO 12696 (港口球菌科,Porticoccaceae;分离自鹿角杯形珊瑚组织)按供、受体菌细胞数比分别为4:1、2:1、1:1比例混合,在25℃和30℃下于改良LB培养基上接合转移。显微观察标记细菌与虫黄藻相互作用。【结果】改良的LB培养基适用于需海水才可生长的专性海洋细菌的接合转移实验。接合转移的效率与供、受体菌的比例及温度有关。确定优化的接合转移条件为:供、受体菌的比例为1:1,温度为30℃。利用建立的接合转移体系,构建了增强型绿色荧光蛋白标记菌株S...  相似文献   

8.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Molecular recognition force spectroscopy (MR‐FS) was applied to investigate the dynamic interaction between aptamer GBI‐10 and tenascin‐C (TN‐C) on human glioblastoma cell surface at single‐molecule level. The unbinding force between aptamer GBI‐10 and TN‐C was 39 pN at the loading rate of 0.3 nN sec?1. A series of kinetic parameters concerning interaction process such as the unbinding force fu, the association rate constant kon, dissociation rate constant at zero force koff, and dissociation constant KD for aptamer GBI‐10/TN‐C complexes were acquired. In addition, the interaction of aptamer GBI‐10 with TN‐C depended on the presence of Mg2+. This work demonstrates that MR‐FS can be used as an attractive tool for exploring the interaction forces and dynamic process of aptamer and ligand at the single‐molecule level. As a future perspective, MR‐FS may be used as a potential diagnostic and therapeutic tool by combining with other techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Imai T  Hiraoka R  Kovalenko A  Hirata F 《Proteins》2007,66(4):804-813
Water molecules confined in protein cavities are of great importance in understanding the protein structure and functions. However, it is a nontrivial task to locate such water molecules in protein by the ordinary molecular simulation and modeling techniques as well as experimental methods. The present study proves that the three-dimensional reference interaction site model (3D-RISM) theory, a recently developed statistical-mechanical theory of molecular solvation, has an outstanding advantage in locating such water molecules. In this paper, we demonstrate that the 3D-RISM theory is able to reproduce the structure and the number of water molecules in cavities of hen egg-white lysozyme observed commonly in the X-ray structures of different resolutions and conditions. Furthermore, we show that the theory successfully identified a water molecule in a cavity, the existence of which has been ambiguous even from the X-ray results. In contrast, we confirmed that molecular dynamics simulation is helpless at present to find such water molecules because the results substantially depend on the initial coordinates of water molecules. Possible applications of the theory to problems in the fields of biochemistry and biophysics are also discussed.  相似文献   

11.
Model membranes with unsaturated lipid chains containing various amounts of M13 coat protein in the -helical form were studied using time-resolved fluorescence and ESR spectroscopy. The lipid-to-protein (L/P) ratios used were > 12 to avoid protein-protein contacts and irreversible aggregation leading to -polymeric coat protein. In the ESR spectra of the 12-SASL probe in dioleoyl phosphatidylcholine (DOPC) bilayers no second protein induced component is observed upon incorporation of M13 coat protein. However, strong effects are detected on the ESR lineshapes upon changing the protein concentration. The ESR lineshapes are simulated by assuming a fixed ratio between the parallel (D) and perpendicular (D) diffusion coefficients of 4, and an order parameter equal to zero. It is found that increasing the protein concentration from L/P to L/P 15 results in a decrease of the rotational diffusion coefficient D from 3.4 × 107 to 1.9 × 107 s–1. In the time-resolved fluorescence experiments with DPH-propionic acid as a probe, it is observed that increasing the M13 coat protein concentration causes an increase of the two fluorescent lifetimes, indicating an increase in bilayer order. Analysis of the time-resolved fluorescence anisotropy decay allows one to quantitatively determine the order parameters P2 and P4, and the rotational diffusion coefficient D of the fluorescent probe. The order parameters P2 and P4 increase from 0.34 to 0.55 and from 0.59 to 0.77, respectively, upon adding M13 coat protein to DOPC bilayers with an L/P ratio of 35. The rotational diffusion coefficient D of the DPH-propionic acid probe decreases on incorporating M13 coat protein, in accordance with the ESR results. It is concluded that M13 coat protein in the -monomeric state is not able to produce a long living lipid boundary shell and consequently an immobilization of the lipids. An overall effect on the lipids is induced, resulting in a reduction in the dynamics and an increase in average lipid order. The hydrophobic region of M13 coat protein is proposed to perfectly match the lipid bilayer, resulting in a relatively small distortion of the bilayer structure of the lipid system.  相似文献   

12.
Smoothened (SMO) antagonist Vismodegib effectively inhibits the Hedgehog pathway in proliferating cancer cells. In early stage of treatment, Vismodegib exhibited promising outcomes to regress the tumors cells, but ultimately relapsed due to the drug resistive mutations in SMO mostly occurring before (primary mutations G497W) or after (acquired mutations D473H/Y) anti-SMO therapy. This study investigates the unprecedented insights of structural and functional mechanism hindering the binding of Vismodegib with sensitive and resistant mutant variants of SMO (SMOMut). Along with the basic dynamic understanding of Vismodegib-SMO complexes, network propagation theory based on heat diffusion principles is first time applied here to identify the modules of residues influenced by the individual mutations. The allosteric modulation by GLY497 residue in Vismodegib bound SMO wild-type (SMOWT) conformation depicts the interconnections of intermediate residues of SMO with the atom of Vismodegib and identify two important motifs (E-X-P-L) and (Q-A-N-V-T-I-G) mediating this allosteric regulation. In this study a novel computational framework based on the heat diffusion principle is also developed, which identify significant residues of allosteric site causing drug resistivity in SMOMut. This framework could also be useful for assessing the potential allosteric sites of different other proteins. Moreover, previously reported novel inhibitor “ZINC12368305,” which is proven to make an energetically favorable complex with SMOWT is chosen as a control sample to assess the impact of receptor mutation on its binding and subsequently identify the important factors that govern binding disparity between Vismodegib and ZINC12368305 bound SMOWT/Mut conformations.  相似文献   

13.
Lead ion templated thermosensitive heteropolymer gel which has recognition ability of methacrylate pairs has been synthesized and characterized. The gel consists of a main monomer component, N-isopropylacrylamide (NIPA), responsible for volume phase transition, methacrylic acid (MAA) moieties imprinted as pairs to adsorb terbium ions and cross-links. An imprinting technique was applied using lead ion complex with methacrylate ligands in dioxane media. After gel was obtained, lead ions were removed by washing and the imprinted gel showed strong binding ability to terbium ions, comparable with that of the non-imprinted gel prepared without lead ions. It was found that the Tb(3+) fluorescence intensity was considerably increased upon binding this ion to both imprinted and non-imprinted gels, but the largest enhancement of fluorescence intensity was observed when Tb(3+) was bound to imprinted gel in shrunken state. This is because of the decrease of coordinated water molecules on Tb(3+) and the strong binding of this ion to methacrylate pairs which are encoded within the weakly cross-linked network of imprinted gel.  相似文献   

14.
1. Loss of response after prolonged or repeated application of stimulus is generally termed desensitization. A wide variety of phenomena occurring in living organisms falls under this general definition of desensitization. There are two main types of desensitization processes: specific and non-specific. 2. Desensitization of the nicotinic acetylcholine receptor is triggered by prolonged or repeated exposure to agonists and results in inactivation of its ion channel. It is a case of specific desensitization and is an intrinsic molecular property of the receptor. 3. Desensitization of the nicotinic acetylcholine receptor at the neuromuscular junction was first reported by Katz and Thesleff in 1957. Desensitization of the receptor has been demonstrated by rapid kinetic techniques and also by the characteristic "burst kinetics" obtained from single-channel recordings of receptor activity in native as well as in reconstituted membranes. In spite of a number of studies, the detailed molecular mechanism of the nicotinic acetylcholine receptor desensitization is not known with certainty. The progress of desensitization is accompanied by an increase in affinity of the receptor for its agonist. This change in affinity is attributed to a conformational change of the receptor, as detected by spectroscopic and kinetic studies. A four-state general model is consistent with the major experimental observations. 4. Desensitization of the nicotinic acetylcholine receptor can be potentially modulated by exogenous and endogenous substances and by covalent modifications of the receptor structure. Modulators include the noncompetitive blockers, calcium, the thymic hormone peptides (thymopoietin and thymopentin), substance P, the calcitonin gene-related peptide, and receptor phosphorylation. Phosphorylation is an important posttranslational covalent modification that is correlated with the regulation and desensitization of the receptor through various protein kinases. 5. Although the physiological significance of desensitization of the nicotinic receptor is not yet fully understood, desensitization of receptors probably plays a significant role in the operation of the neuronal networks associated in memory and learning processes. Desensitization of the nicotinic receptor could also possibly be related to the neuromuscular disease, myasthenia gravis.  相似文献   

15.
《FEBS letters》2014,588(23):4342-4347
In addition to the standard NADPH thioredoxin reductases (NTRs), plants hold a plastidic NTR (NTRC), with a thioredoxin module fused at the C-terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs). The interaction of NTRC and chloroplastic thioredoxin x with 2-Cys Prxs has been confirmed in vivo, by bimolecular fluorescence complementation (BiFC) assays, and in vitro, by isothermal titration calorimetry (ITC) experiments. In comparison with thioredoxin x, NTRC interacts with 2-Cys Prx with higher affinity, both the thioredoxin and NTR domains of NTRC contributing significantly to this interaction, as demonstrated by using the NTR and thioredoxin modules of the enzyme expressed separately. The presence of the thioredoxin domain seems to prevent the interaction of NTRC with thioredoxin x.  相似文献   

16.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

17.
Both the molecular recognition and interaction of metallo‐β‐lactamase CcrA with l ‐captopril were studied by the combined use of fluorescence spectra and molecular dynamic simulation. The results showed that the binding constant was 8.89 × 104 L mol?1 at 296 K. Both Zn1 and Zn2 displayed tetrahedral coordination geometries in the CcrA–Lcap complex, the S atom in l ‐captopril displaced the nucleophilic hydroxide in apo CcrA and occupied the fourth coordination site for each ion, resulting in a competitively inhibited CcrA enzyme. Strong electrostatic interaction between the two zinc ions in CcrA and negatively charged l ‐captopril provided the main driving force for the binding affinity. Through a partly structural transformation from β‐sheet to random coil, loop 1 (residues 24–34) completely opened the binding pocket of CcrA to allow an induced fit of the newly introduced ligand. This study may provide some valuable information for designing and developing a more tightly binding inhibitor to resist superbugs.  相似文献   

18.
Binding of the protein Raf to the active form of Ras promotes activation of the MAP kinase signaling pathway, triggering cell growth and differentiation. Raf/Arg89 in the center of the binding interface plays an important role determining Ras-Raf binding affinity. We have investigated experimentally and computationally the Raf-R89K mutation, which abolishes signaling in vivo. The binding to [gamma-35S]GTP-Ras of a fusion protein between the Raf-binding domain (RBD) of Raf and GST was reduced at least 175-fold by the mutation, corresponding to a standard binding free energy decrease of at least 3.0 kcal/mol. To compute this free energy and obtain insights into the microscopic interactions favoring binding, we performed alchemical simulations of the RBD, both complexed to Ras and free in solution, in which residue 89 is gradually mutated from Arg into Lys. The simulations give a standard binding free energy decrease of 2.9+/-1.9 kcal/mol, in agreement with experiment. The use of numerous runs with three different force fields allows insights into the sources of uncertainty in the free energy and its components. The binding decreases partly because of a 7 kcal/mol higher cost to desolvate Lys upon binding, compared to Arg, due to better solvent interactions with the more concentrated Lys charge in the unbound state. This effect is expected to be general, contributing to the lower propensity of Lys to participate in protein-protein interfaces. Large contributions to the free energy change also arise from electrostatic interactions with groups up to 8 A away, namely residues 37-41 in the conserved effector domain of Ras (including 4 kcal/mol from Ser39 which loses a bifurcated hydrogen bond to Arg89), the conserved Lys84 and Lys87 of Raf, and 2-3 specific water molecules. This analysis will provide insights into the large experimental database of Ras-Raf mutations.  相似文献   

19.
20.
We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions have been explored. Ribosomes or 60S large ribosomal subunits activate the GTPase cycle of SRP54 and SRalpha by providing a platform for assembly of the SRP-SR complex. Biosensor experiments revealed high-affinity, saturable binding of ribosomes or large ribosomal subunits to the SR. Remarkably, the SR has a 100-fold higher affinity for the ribosome than for SRP. Proteoliposomes that contain the SR bind nontranslating ribosomes with an affinity comparable to that shown by the Sec61 complex. An NH2-terminal 319-residue segment of SRalpha is necessary and sufficient for binding of SR to the ribosome. We propose that the ribosome-SR interaction accelerates targeting of the ribosome nascent chain complex to the RER, while the SRP-SR interaction is crucial for maintaining the fidelity of the targeting reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号