首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4‐EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4‐EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4‐EGFP transgenic medaka in reproductive and stem cell biology. Mol. Reprod. Dev. 80: 48–58, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
The spermatogonial transplantation system was applied to evaluate stem cell kinetics and niche quality and to produce gene-modified animals using the stem cells after homologous recombination-based selection. This study was designed to determine whether the transplanted spermatogonia were able to proliferate and differentiate in male rats expressing the c-myc transgene under control of the human metallothionein IIA promoter (MT-myc Tg rats). Donor testicular cells were prepared from heterozygous chicken beta actin (CAG)/enhanced green fluorescent protein (EGFP)-transgenic rats (EGFP Tg rats) during the second week after birth and injected into the seminiferous tubules of the MT-myc Tg rats (line-A and -B; both subfertile) or rats pretreated with busulfan to remove endogenous spermatogonia. Three to four months after transplantation, cell colonies with EGFP fluorescence were detected in 36% (4/11), 40% (8/20), and 71% (5/7) of the transplanted testes in line-A MT-myc Tg rats, line-B MT-myc Tg rats, and busulfan-treated rats, respectively. No EGFP-positive colonies were detected when wild-type male rats were used as recipients (0/7; testis-basis). The histopathological and immunofluorescent examination of the serial sections from the transplanted testes showed normal spermatogenesis of the donor spermatogonia, but atrophy of the recipient seminiferous tubules. Microinsemination with round spermatids and mature spermatozoa derived from EGFP-positive testes in line-A rats resulted 26% (10/39 transferred) and 23% (11/48 transferred) full-term offspring, respectively. Thus, the MT-myc Tg male rats were suitable as potent recipients for spermatogonial transplantation without any chemical pretreatment to remove the endogenous spermatogonia.  相似文献   

4.
To study the complex molecular mechanisms of mammalian spermatogenesis, it would be useful to be able to isolate cells at each stage of differentiation, especially at the stage in which the cells switch from mitosis to meiosis. Currently, no useful marker proteins or gene promoters specific to this important stage are known. We report here a transgenic mouse line that under the control of the promoter for a histone variant, H2A.X, expressed an enhanced green fluorescent protein (EGFP) in cells at the stage of the mitosis-meiosis switch. Endogenous H2A.X is expressed in type A spermatogonia through meiotic prophase spermatocytes in testis and in some somatic cells. However, despite the fact that its expression was driven by the H2A.X promoter, the EGFP expressed in the transgenic mice specifically labeled only the intermediate spermatogonia stage through the meiotic prophase spermatocyte stage in transgenic mice containing the -600-base pair H2A.X promoter/EGFP construct. Type A spermatogonia and somatic cells of other organs were not labeled. This expression pattern made it possible to isolate living cells from the testis of the transgenic mice at the stage of the mitosis-meiosis switch in spermatogenesis using EGFP fluorescence.  相似文献   

5.
目的随着干细胞研究的推进,大鼠干细胞的研究日趋迫切。本研究旨在为活体荧光影像系统、干细胞归巢、细胞移植体内示踪研究,提供绿色荧光蛋白EGFP转基因大鼠模型。方法通过显微注射方式获得EGFP转基因大鼠,采用活体荧光影像系统、激光共聚焦显微镜,对EGFP转基因大鼠各个组织的荧光表达水平进行比较;采用流式细胞术检测转基因大鼠血液和骨髓细胞、骨髓干细胞的荧光标记率,筛选骨髓干细胞高效标记绿色荧光的转基因大鼠。结果建立了心脏、肝脏、肌肉、肺、胰腺、脑、膀胱、胃、肾脏、肠和脾脏组织中,系统性表达EGFP的SD-TgN(ACT-EGFP-1)ZLFILAS转基因大鼠;流式细胞术检测表明,该品系血液细胞绿色荧光标记率为94.4%,骨髓干细胞绿色荧光标记率为97.8%。结论建立了多组织系统性高表达绿色荧光,骨髓干细胞荧光标记率高达95%以上的转基因大鼠,为影像分析,造血干细胞的归巢等研究提供了大鼠模型。  相似文献   

6.
7.
The stem cell properties of gonocytes and prospermatogonia at prepubertal stages are still largely unknown: it is not clear whether gonocytes and prospermatogonia are a special cell type or similar to adult undifferentiated spermatogonia. To characterize these cells, we have established transgenic mice carrying EGFP (enhanced green fluorescence protein) cDNA under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; Oct4 is reported to be expressed in undifferentiated spermatogonia at prepubertal stages. Generation of transgenic mice enabled us to purify gonocytes and prospermatogonia from the somatic cells of the testis. Transplantation studies of testicular cells so far have been done with a mixture of germ cells and somatic cells. This is the first report that establishes how to purify germ cells from total testicular cells, enabling evaluation of cell-autonomous repopulating activity of a subpopulation of prospermatogonia. We show that prospermatogonia differ markedly from adult spermatogonia in both the size of the KIT-negative population and cell cycle characteristics. The GFP(+) KIT(-) fraction of prospermatogonia has much higher repopulating activity than does the GFP(+)KIT(+) population in the adult environment. Interestingly, the GFP(+)KIT(+) population still exhibits repopulating activity, unlike adult KIT-positive spermatogonia. We also show that ALCAM, activated leukocyte cell adhesion molecule, is expressed transiently in gonocytes. Sertoli cells and myoid cells also express ALCAM at the same stage, suggesting that ALCAM may contribute to gonocyte-Sertoli cell adhesion and migration of gonoyctes toward the basement membrane.  相似文献   

8.
We have obtained the EGFP (enhanced green fluorescence protein) gene transgenic porcine fetuses before. The aims of this study were (i) to determine whether stem cells could be isolated from amniotic fluid of the transgenic porcine fetuses, and (ii) to determine if these stem cells could express EGFP and differentiate in vitro. The results demonstrated that stem cells could be isolated from amniotic fluid of the EGFP gene transgenic porcine fetuses and could express EGFP and differentiate in vitro. Undifferentiated AFSs (amniotic fluid-derived stem cells) expressed POU5F1, THY1 and SOX2, while the following differentiation cells expressed markers for chondrogenic (COL2A1), osteogenic (osteocalcin and osteonectin) and neurogenic cells such as astrocyte (GFAP), oligodendrocyte (GALC) and neuron (NF, ENO2 and MAP).  相似文献   

9.
10.
Spermatogenesis is the process by which spermatogonial stem cells divide and differentiate into sperm. The role of growth factor receptors in regulating self-renewal and differentiation of spermatogonial stem cells remains largely unclear. This study was designed to examine Gfra1 receptor expression in immature and adult mouse testes and determine the effects of Gfra1 knockdown on the proliferation and differentiation of type A spermatogonia. We demonstrated that GFRA1 was expressed in a subpopulation of spermatogonia in immature and adult mice. Neither Gfra1 mRNA nor GFRA1 protein was detected in pachytene spermatocytes and round spermatids. GFRA1 and POU5F1 (also known as OCT4), a marker for spermatogonial stem cells, were co-expressed in a subpopulation of type A spermatogonia from 6-day-old mice. In addition, the spermatogonia expressing GFRA1 exhibited a potential for proliferation and the ability to form colonies in culture, which is a characteristic of stem cells. RNA interference assays showed that Gfra1 small interfering RNAs (siRNAs) knocked down the expression of Gfra1 mRNA and GFRA1 protein in type A spermatogonia. Notably, the reduction of Gfra1 expression by Gfra1 siRNAs induced a phenotypic differentiation, as evidenced by the elevated expression of KIT, as well as the decreased expression of POU5F1 and proliferating cell nuclear antigen (PCNA). Furthermore, Gfra1 silencing resulted in a decrease in RET phosphorylation. Taken together, these data indicate that Gfra1 is expressed dominantly in mouse spermatogonial stem cells and that Gfra1 knockdown leads to their differentiation via the inactivation of RET tyrosine kinase, suggesting an essential role for Gfra1 in spermatogonial stem cell regulation.  相似文献   

11.
Numerous wild bovids are facing threat of extinction owing to the loss of habitat and various other reasons. Spermatogonial stem cells (SSCs) represent the only germline stem cells in adult body that are capable of self-renewal and that can undergo differentiation to produce haploid germ cells. SSCs can, therefore, serve as a useful resource for preservation of germplasm of threatened and endangered mammals. The Indian black buck (Antilope cervicapra L.) is a small Indian antelope that is listed as endangered by the Indian Wildlife Protection Act, 1972. Immunohistochemical analysis of testes tissues of black buck revealed the presence of spermatogonia that were specifically stained by lectin-Dolichos biflorus agglutinin (DBA). The expression of pluripotent cell-specific markers, NANOG and stage-specific embryonic antigen-1 (SSEA-1), was detected in spermatogonia. Interestingly, the expression of POU5F1 (OCT3/4) was absent from spermatogonia, however, it was detected in differentiating cells such as spermatocytes and round spermatids but not in elongated spermatids. The expression of NANOG protein was also present in spermatocytes but absent in round and elongated spermatids. Using the testis transplantation assay, stem cell potential of black buck spermatogonia was confirmed as indicated by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. The findings from this study suggest the presence of SSCs in the testis of an endangered bovid for the first time and open new possibility to explore the use of SSCs in conservation.  相似文献   

12.
An inducible reporter gene system for Chinese Hamster Ovary (CHO-DHFR(-)) cells has been developed and characterized with respect to its dynamic properties. The reporter gene system consists of the human c-fos promoter and variants of the green fluorescence protein (GFP), either EGFP with enhanced fluorescence or its destabilized form d2EGFP. The expression of wild-type EGFP or its destabilized form was studied in CHO-DHFR(-) cells in response to serum addition or deprivation. It was shown that serum-induced c-fos promoter mediated EGFP expression was considerably higher than expression from the human CMV promoter, a strong, constitutive promoter preferentially used for high-level expression in CHO cells. However, EGFP was less suitable for studying expression dynamics than d2EGFP due to the protein's long half-life in mammalian cells. The use of d2EGFP resulted in a significant improvement in the dynamic characteristics of the biomarker, particularly when the recombinant cells were selected for high-level GFP expression by subcloning or fluorescence activated cell/sorting (FACS). GFP expression in different subclones and cell populations sorted by FACS was characterized with respect to its dynamic responses in the presence or absence of serum in the culture medium. Significant differences in the GFP expression dynamics were observed for the isolated cell populations. The experimental results indicate that cells with high-level GFP expression also have a faster dynamic response and are thus, desirable for practical application of the reporter gene system e.g. in toxicity monitoring.  相似文献   

13.
Efficient gene transfer into murine embryonic stem cells by nucleofection   总被引:3,自引:0,他引:3  
Genetic manipulation of embryonic stem (ES) cells is performed by non-viral as well as viral transfection methods. We tested the recently developed nucleofection method delivering plasmid DNA directly into the nucleus for the introduction of a plasmid encoding enhanced green fluorescent protein (EGFP) into murine ES cells. Cell viability decreased from 77% before to 40% 24 h after nucleofection. Transfection effciencies in viable stem cells were between 85% and 96% with high levels of EGFP expression [mean fluorescence intensity (MFI): 630 +/- 90] 24 h after nucleofection. After a two week culture in geneticin (G418) selection medium, nearly 50% of the stem cells were EGFP positive and continued transgene expression (MFIs: 120-240) for a two further weeks. We conclude that nucleofection is an efficient nonviral gene transfer method for the introduction of genes into murine ES cells.  相似文献   

14.
We have generated a transgenic mouse line,Tg(Stra8-cre)1Reb (Stra8-cre), which expresses improved Cre recombinase under the control of a 1.4 Kb promoter region of the germ cell-specific stimulated by retinoic acid gene 8 (Stra8). cre is expressed only in males beginning at postnatal day (P)3 in early-stage spermatogonia and is detected through preleptotene-stage spermatocytes. To further define when cre becomes active, we crossed Stra8-cre males with Tg(ACTB-Bgeo/GFP)21Lbe (Z/EG) reporter females and compared the expression of enhanced green fluorescent protein (EGFP) with the protein encoded by the zinc finger and BTB domain containing 16 (Zbtb16) gene, PLZF-a marker for undifferentiated spermatogonia. Co-expression of EGFP is observed in the majority of PLZF+ cells. We also tested recombination efficiency by mating Stra8-cre;Z/EG males and females with wild-type mice and examining EGFP expression in the offspring. Recombination is detected in >95% of Z/EG+ pups born to Stra8-cre;Z/EG fathers but in none of the offspring born to transgenic mothers, a verification that cre is not functional in females. The postnatal, premeiotic, male germ cell-specific activity of Stra8-cre makes this mouse line a unique resource to study testicular germ cell development.  相似文献   

15.
16.
Transgenic mice homogeneously expressing enhanced green fluorescence protein (EGFP) in primitive hematopoietic cells and all blood cell progeny, including erythrocytes and platelets, have not been reported. Given previous data indicating H2Kb promoter activity in murine hematopoietic stem cells (HSCs), bone marrow (BM), and lymphocytes, an H2Kb enhancer/promoter EGFP construct was used to generate transgenic mice. These mice demonstrated pancellular EGFP expression in both primitive BM Sca-1+Lin-Kit+ cells and side population (SP) cells. Additionally, all peripheral blood leukocytes subsets, erythrocytes, and platelets uniformly expressed EGFP strongly. Competitive BM transplantation assays established that transgenic H2Kb-EGFP HSCs had activity equivalent to wildtype HSCs in their ability to reconstitute hematopoiesis in lethally irradiated mice. In addition, immunohistochemistry revealed EGFP transgene expression in all tissues examined. This transgenic strain should be a useful reagent for both murine hematopoiesis studies and functional studies of specific cell types from particular tissues.  相似文献   

17.
Identification and isolation of spermatogonial stem cells (SSCs) are a prerequisite for culture, genetic manipulation, and/or transplantation research. In this study, we established that expression of PGP 9.5 is a spermatogonia-specific marker in porcine testes. The expression pattern of PGP 9.5 in spermatogonia was compared to cell type-specific protein (GATA-4 or PLZF) expression in seminiferous tubules at different ages, and expression levels of PGP 9.5, Vasa, and Oct-4 were compared in different cell fractions. Enrichment of spermatogonia from 2-week-old (2wo) and 10-week-old (10wo) boars by adhesion to laminin, differential plating, or velocity sedimentation followed by differential plating was assessed by identification of spermatogonia using expression of PGP 9.5 as a marker. Compared to the initial samples, spermatogonia were enriched twofold in laminin-selected cells (P < 0.05), and fivefold either in cells remaining in suspension (fraction I) or in cells slightly attached to the culture dish (fraction II) (P < 0.05) after differential plating. Cells in fraction II appeared to be superior for future experiments due to higher viability (>90%) than in fraction I ( approximately 50%). Velocity sedimentation plus differential plating achieved cell populations containing up to 70% spermatogonia with good viability (>80%). Enriched spermatogonia from 2wo and 10wo testes could be maintained in a simple culture medium without additional growth factors for at least 2 weeks and continued to express PGP 9.5. These data provide the basis for future studies aimed at refining conditions of germ cell culture and manipulation prior to germ cell transplantation in pigs.  相似文献   

18.
Juvenile zebrafish are hermaphroditic; undifferentiated gonads first develop into ovary-like tissues, which then either become ovaries and produce oocytes (female) or degenerate and develop into testes (male). In order to fully capture the dynamic processes of germ cells' proliferation and juvenile hermaphroditism in zebrafish, we established transgenic lines TG(beta-actin:EGFP), harboring an enhanced green fluorescent protein (EGFP) gene driven by a medaka beta-actin promoter. In TG(beta-actin:EGFP), proliferating germ cells and female gonads strongly expressed EGFP, but fluorescence was only dimly detected in male gonads. Based on the fluorescent (+) or nonfluorescent (-) appearance of germ cells seen in living animals, three distinct groups were evident among TG(beta-actin:EGFP). Transgenics in ++ group (44%) were females, had fluorescent germ cells as juveniles, and female gonads continuously fluoresced throughout sexual maturation. Transgenics in +- (23%) and -- (33%) groups were males. Fluorescent germ cells were transiently detected in +- transgenics from 14 to 34 days postfertilization (dpf), but were not detected in -- transgenics throughout their life span. Histological analyses showed that 26-dpf-old transgenics in ++, +-, and -- groups all developed ovary-like tissues: Germ cells in -- group juveniles arrested at the gonocyte stage and accumulated low quantities of EGFP, while those in ++ group juveniles highly proliferated into diplotene to perinucleolar stages and accumulated high quantities of EGFP. In +- group juveniles, degenerating oocytes, gonocytes, and spermatogonia were coexistent in transiently fluorescent gonads. Therefore, the fluorescent appearance of gonads in this study was synchronous with the differentiation of ovary-like tissues. Thus, TG(beta-actin:EGFP) can be used to visualize germ cells' proliferation and juvenile hermaphroditism in living zebrafish for the first time.  相似文献   

19.
Drosophila melanogaster S2 cells were co-transfected with plasmid vectors containing the enhanced green fluorescent protein gene (EGFP), under the control of metallothionein promoter (pMt), and the hygromycin selection gene, in view of establishing parameters for optimized gene expression. A protocol of transfection was worked out, leading after hygromycin selection, to ∼90% of S2MtEGFP fluorescent cells at day 5 after copper sulfate (CuSO4) induction. As analyzed by confocal microscopy, S2MtEGFP cell cultures were shown to be quite heterogeneous regarding the intensity and cell localization of fluorescence among the EGFP expressing cells. Spectrofluorimetry kinetic studies of CuSO4 induced S2MtEGFP cells showed the EGFP expression at 510 nm as soon as 5 h after induction, the fluorescence increasing progressively from this time to attain values of 4.6 × 105 counts/s after 72 h of induction. Induction with 700 μM of CuSO4 performed at the exponential phase of the S2MtEGFP culture (106 cells/mL) led to a better performance in terms of cell growth, percent of fluorescent cells and culture intensity of fluorescence. Sodium butyrate (NaBu) treatment of CuSO4 induced S2MtEGFP cell cultures, although leading to a loss of cell culture viability, increased the percent of EGFP expressing cells and sharply enhanced the cell culture fluorescence intensity. The present study established parameters for improving heterologous protein expression in stably transfected Drosophila S2 cells, as assessed by the EGFP expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号