首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
功能基因组学的研究重心是在整体水平上对细胞内蛋白质的组成及其活动规律进行研究,化学遗传学利用小分子化合物系统地探测生命过程的机制和蛋白质功能,为功能基因组学的研究提供了有力的工具。该文综述了化学遗传学在功能基因组学研究中的最新进展。  相似文献   

2.
植物功能基因组学研究技术及其在林木中的应用   总被引:5,自引:0,他引:5  
介绍了近年来植物功能基因组学研究技术包括表达序列标签、基因表达的系列分析、DNA微阵列、反向遗传学的发展及其在植物,特别是在林木中的应用进展.  相似文献   

3.
慢性疼痛是一个世界性难题,其治疗效果不佳,与其机制不明有很大关系。解决机制问题,探索有效的治疗方法已经成为研究的焦点。伴随着后基因时代的到来,以及分子生物学,生物信息学等多门生物相关学科的发展,RNA干扰技术,反义寡核苷酸技术,基因芯片等这些功能基因组学中常用的实验手段,通过在基因组或系统水平上全面分析基因的功能,为研究慢性疼痛发生机制,发现新的疼痛调节相关基因以及探索疼痛治疗的新途径开辟了更加广阔的空间。  相似文献   

4.
cDNA微阵列技术在植物功能基因组学研究中的应用   总被引:5,自引:0,他引:5  
cDNA微阵列 (cDNAMicroarrays)技术是近年发展起来的分子生物学研究新型工具 ,以分子杂交为基本原理 ,在检测植物基因表达水平、研究基因表达图谱、特异基因检测以及发现新基因和分离差异表达基因等方面有着独特的优势 ,已成为植物功能基因组学研究的重要手段。  相似文献   

5.
植物功能基因组学研究的有效工具--RNAi技术   总被引:12,自引:0,他引:12  
综述了RNA干扰的机制以及在生物体内的功能等方面的研究进展,并对在此基础上发展起来的RNA干扰技术在植物功能基因组学中的应用情况作了简要的介绍.  相似文献   

6.
植物反转录转座子及其在功能基因组学中的应用   总被引:6,自引:0,他引:6  
高等植物中的反转录转座子是构成植物基因组的重要成分之一.它分病毒家族和非病毒家族两类,病毒家族包括反转录病毒和类似于反转录病毒的非病毒转座子,病毒家族中的反转录转座子可再细分为Ty3-gypsy类和Ty1-copia类;非病毒家族可细分为LINE类和SINE类.正常情况下大部分反转录转座子不具有活性,某些生物或非生物因素胁迫可激活部分反转录转座子转座.反转录转座子自身编码反转录酶进行转录,以"拷贝-粘贴"的转座模式导致基因组扩增和进化.具有活性的反转录转座子通过插入产生新的突变,可作为一种基因标签技术,应用于功能基因组学研究,并成为研究植物基因功能和表达的重要技术平台.本文综述了近几年来在植物反转录转座子方面的研究进展,主要包括植物反转录转座子的结构、特征、活性及其对基因组的影响和它们在功能基因组学中的应用.  相似文献   

7.
基因组学方法在植物抗逆性研究中的应用   总被引:2,自引:0,他引:2  
由于植物抗逆性遗传极其复杂,因而植物抗逆性能(包括抗非生物胁迫如盐碱,干旱,低温等的能力和抗生物协迫如真菌,细菌,病毒和线虫的能力等)的提高受到了极大限制,近年来,基因组学的兴起对我们全面理解植物抗逆性起着革命性作用,结果基因组学将会使我们挖大量全新的抗逆基因,并能揭示各抗逆性基因的详细结构以及抗逆性遗传进化机理,功能基因组学将会阐明植物抗逆中的复杂的调控,网络,揭示涉及抗逆蛋白的多样性,通过比较基因学的研究,可以把从模式植物上获得的抗逆遗传信息推广到基因组较复杂的植物上去,大规模的全新基因的发现及其在抗逆反应中的表达模式的研究和它们在抗逆应中作用的理解将会利用遗传工程进行植物抗逆育种提供广阔的前景。  相似文献   

8.
随着人类基因组大规模测序的完成,下一步的挑战是了解每一个基因的功能 . RNA 干扰文库为大规模基因功能筛选提供了可能 . 虽然用于线虫等模式生物的 RNAi 文库,已经证明是大规模基因功能筛选的有效方法,但这些文库不能用于高等动物的细胞 . 自 2003 年以来,用于人的细胞和哺乳动物细胞的 RNAi 文库取得了突破,相继出现构建已知基因 RNAi 文库和构建随机 RNAi 文库的报道,并成功地应用于大规模基因功能的筛选 . RNAi 文库作为一种简单、高效、大规模、高通量的功能基因组学研究的工具,将在基因功能研究、发现新的药物靶基因、发现疾病相关基因等方面有广阔的应用前景 .  相似文献   

9.
TILLING技术在功能基因组学中的应用   总被引:1,自引:0,他引:1  
TILLING(定向诱导基因组局部突变)技术是近年发展起来的一种高通量筛选化学诱变的点突变的技术,它利用专一识别点突变的核酸酶结合PCR来检测单核苷酸多态性(SNP)。TILLING技术起源于植物基因组研究,逐渐扩展到动物及人类功能基因组学的研究中。无论是筛选突变体还是研究特定基因的重要性,TILLING都具有高通量、自动化的优势。随着此项技术应用范围的扩展,从诱变剂和内切酶的选择到具体的操作方式,以及结果的识别和统计方法,都有了不少改进。在其他相关学科不断发展的大环境下,TILLING技术也在不断发展,其在功能基因组学研究中的作用也会更显著。  相似文献   

10.
DNA多态性及其在植物功能基因组学研究中的应用   总被引:2,自引:1,他引:2  
DNA多态性是生物多样性的基础。本综述了DNA多态性的影响因素,并就DNA多态性应用于基因定位、基因克隆以及基因功能分析等领域进行了探讨,展示了DNA多态性在植物功能基因组学研究中的广阔应用前景。  相似文献   

11.
A transgenic perspective on plant functional genomics   总被引:17,自引:0,他引:17  
Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
RNAi技术及在植物功能基因组研究中的应用   总被引:4,自引:0,他引:4  
RNAi,即RNA干扰,是通过外源或内源性的双链RNA在细胞内诱导同源序列的基因表达受抑的现象,自RNAi现象在上世纪90年代中期被发现以来,它就被利用到基因组功能的分析研究之中,成为分子生物学研究的热点。本文简要阐述了RNAi的作用机制,并通过将RNAi方法与其他功能基因组研究方法的对比,阐述了RNAi作为高通量植物功能基因组研究方法的优点,同时综述了利用RNAi技术在植物功能基因组研究中的应用进展。  相似文献   

13.
水稻、拟南芥等模式植物基因组测序计划的完成,验证预测基因的功能成为植物功能基因组学的重要内容,基因打靶(gene targeting)技术在哺乳动物中的成功应用为该技术在植物上展现了广阔的应用前景。现对植物基因打靶技术的影响因素、基因打靶在植物中的应用现状作一介绍。  相似文献   

14.
Food security is a global concern and substantial yield increases in crops are required to feed the growing world population. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. Targeting Induced Local Lesions in Genomes(TILLING), which combines traditional chemical mutagenesis with high‐throughput genome‐wide screening for point mutations in desired genes, offers a powerful way to create novel mutant alleles for both functional genomics and improvement of crops. TILLING is generally applicable to genomes whether small or large, diploid or evenallohexaploid, and shows great potential to address the major challenge of linking sequence information to the function of genes and to modulate key traits for plant breeding. TILLING has been successfully applied in many crop species and recent progress in TILLING is summarized below, especially on the developments in mutation detection technology, application of TILLING in gene functional studies and crop breeding. The potential of TILLING/EcoTILLING for functional genetics and crop improvement is also discussed. Furthermore, a small‐scale forward strategy including backcross and selfing was conducted to release the potential mutant phenotypes masked in M2(or M3) plants.  相似文献   

15.
Food security is a global concern and substantial yield increases in crops are required to feed the growing world population. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. Targeting Induced Local Lesions in Genomes(TILLING), which combines traditional chemical mutagenesis with high‐throughput genome‐wide screening for point mutations in desired genes, offers a powerful way to create novel mutant alleles for both functional genomics and improvement of crops. TILLING is generally applicable to genomes whether small or large, diploid or evenallohexaploid, and shows great potential to address the major challenge of linking sequence information to the function of genes and to modulate key traits for plant breeding. TILLING has been successfully applied in many crop species and recent progress in TILLING is summarized below, especially on the developments in mutation detection technology, application of TILLING in gene functional studies and crop breeding. The potential of TILLING/EcoTILLING for functional genetics and crop improvement is also discussed. Furthermore, a small‐scale forward strategy including backcross and selfing was conducted to release the potential mutant phenotypes masked in M2(or M3) plants.  相似文献   

16.
17.
近年来,随着许多植物基因组测序和可利用序列的增加,相继建立了一些基于靶基因诱变的“反向”遗传学研究策略,如T—DNA诱变、基因敲除、基因沉默和超表达分析等。同时,DNA微阵列和基因芯片技术的发展使得快速、定量检测植物发育不同时期和不同组织器官的基因转录时空变化成为现实。作图技术的改进和来自不同物种基因组信息的整合也正在加速图谱克隆程序的简化和发展。因此,随着生物基因组测序工作日益增多,整合不同类群植物基因组的信息和资源,在植物功能基因组学研究中的重要性日趋显著。  相似文献   

18.
植物逆境胁迫抗性的功能基因组研究策略   总被引:2,自引:0,他引:2  
植物对逆境胁迫抗性的功能基因组研究主要是寻找胁迫抗性位点在相关物种基因组中的保守位置,发现胁迫反应中的高度保守序列,确定植物胁迫反应的调控机理,进而得到植物对逆境胁迫抗性的关键代谢途径和其中的关键调控因子,为进一步选择用于改良植物对逆境胁迫抗性的关键基因奠定基础。本文从主要模式植物(苔藓类植物、复苏植物、盐土植物和甜土植物)、主要技术策略(基因的差异表达分析、基因表达序列标签、cDNA芯片技术。基因表达序列分析和基因敲除和突变体筛选分析)和生物信息学方法(数据分析的生物信息学方法设计到序列比较、比较基因组学、电子克隆)等三个方面对国内外植物逆境胁迫抗性的功能基因组研究策略作了全面综述。  相似文献   

19.
Highly efficient phage-based Escherichia coli homologous recombination systems have recently been developed that enable genomic DNA in bacterial artificial chromosomes to be modified and subcloned, without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombinogenic engineering or recombineering, is efficient and greatly decreases the time it takes to create transgenic mouse models by traditional means. Recombineering also facilitates many kinds of genomic experiment that have otherwise been difficult to carry out, and should enhance functional genomic studies by providing better mouse models and a more refined genetic analysis of the mouse genome.  相似文献   

20.
In recent years,peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science,ranging from medicine to analytical chemistry.These artificial short peptides are able to specifically bind,track,and inhibit a given target molecule with high affinity,even molecules with poor immunogenicity or high toxicity,and represent a remarkable alternative to antibodies in many different applications.Their use is on the rise,driven mainly by the medical and pharmaceutical sector.Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety.The different peptide aptamer selection methods available both in vivo and in vitro are introduced,and the most important possible applications in plant biotechnology are illustrated.In particular,we discuss the generation of broadbased virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed.Furthermore,we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation,based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号