首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a model recombinant retrovirus encoding the Escherichia coli lacZ gene, we have found that medium conditioned with NIH 3T3 cells and packaging cell lines derived from NIH 3T3 cells inhibits infection. Most of the inhibitory activity was greater than 100 kDa and was sensitive to chondroitinase ABC digestion, which is consistent with the inhibitor being a chondroitin sulfate proteoglycan. Proteoglycans secreted by NIH 3T3 cells and purified by anion-exchange chromatography inhibited amphotropic retrovirus infection. Pretreatment of amphotropic retrovirus stocks with chondroitinase ABC boosted the level of transduction efficiency by more than twofold. The implications of these findings with respect to retrovirus-cell interactions and the production of high-titer retroviral stocks are discussed.  相似文献   

2.
When slices of adult rabbit articular cartilage were incubated in culture medium, the rate of incorporation of [35S]sulphate or [3H]acetate into glycosaminoglycans increased 4-8 fold during the first 5 days of incubation. Similar changes in biosynthetic activity were observed during culture of adult bovine cartilage. The activation of synthesis was not serum-dependent, but appeared to be a result of the depletion of tissue proteoglycan that occurs under these incubation conditions [Sandy, Brown & Lowther (1978) Biochim. Biophys. Acta 543, 536--544]. Thus, although complete activation was observed in serum-free medium, it was not observed if the cartilage was cultured inside dialysis tubing or in medium containing added proteoglycan subunit. The average molecular size of the proteoglycans synthesized by activated tissue was slightly larger than normal, as determined by chromatography on Sepharose CL-2B, and the average molecular size of the glycosaminoglycans synthesized by activated tissue was markedly increased over the normal. The increase in chain size was accompanied by an increase in the proportion of the chains degraded by chondroitinase ABC; these results are consistent with the preferential synthesis by activated chondrocytes of chondroitin sulphate-rich proteoglycans. The increase in glycosaminoglycan chain size was observed whether the chains were formed on endogenous core protein or on exogenous benzyl-beta-D-zyloside. An approximate 4-fold activation in culture of glycosaminoglycan synthesis on protein core was accompanied by a 1.54-fold increase in the rate of incorporation of [3H]serine into the chondroitin sulphate-linkage region of the proteoglycans. A 2.8-fold activation in culture of glycosaminoglycan synthesis on benzyl-beta-D-zyloside was accompanied by a 1.7-fold increase in the rate of incorporation of [3H]benzyl-beta-D-zyloside into glycosaminoglycans. The activation of glycosaminoglycan synthesis was, however, accompanied by no detectable change in the activity of xylosyltransferase (EC 2.4.2.26) in cell-free extracts. These results are discussed in relation to current ideas on the control of proteoglycan synthesis in cartilage.  相似文献   

3.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

4.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

6.
The biosynthesis of interstitial collagens (types I and III) and proteoglycans was studied in fibroblasts isolated from the parietal layer of bovine pericardium. Confluent cultures were labeled with Na2 35SO4 for proteoglycans or 14C-proline for collagens. The proteoglycans synthesized by pericardial fibroblasts were purified by DEAE-Sephacel chromatography and further fractionated into three components by gelfilitration. Two minor high molecular weight proteoglycans were shown by SDS-PAGE to be resistant to chondroitinase ABC and AC, and partially degraded by nitrous acid. The major, low molecular weight proteoglycan had a core protein of 45 kDa and is considered to be a dermatan sulfate/chondroitin sulfate proteoglycan since it was resistant to nitrous acid, but digested partially by chondroitinase AC and completely by ABC. The pericardial fibroblasts synthesized predominantly type I collagen and low amounts (about 10%) of type III collagen which was detected by delayed reduction on SDS-PAGE. The data show that pericardial fibroblasts synthesize the same macromolecules that can be extracted from the intact tissue and suggest that the proteoglycan may play a structural as well as physiological role.  相似文献   

7.
We have previously shown that the efficiency of retrovirus-mediated gene transfer is limited in part due to the presence of chondroitin sulfate proteoglycans in virus stocks. In this study, we have used a model recombinant retrovirus encoding the Escherichia coli lacZ gene, bovine aorta chondroitin sulfate proteoglycan (CSPG), various free glycosaminoglycan chains (GAGs), and quantitative assays for retrovirus transduction to explore the mechanism by which proteoglycans and glycosaminoglycans inhibit retroviruses. We found that CSPG and GAGs block an early step in virus-cell interactions but do not act by inactivating viruses or by reducing the growth rate of the target cells. CSPG and most of the GAGs tested (chondroitin sulfate A, chondroitin sulfate B, heparin, heparan sulfate, and hyaluronic acid) inhibited transduction, but with widely varying degrees of activity. The chemical structure of GAGs was found to be an important determinant of their inhibitory activity, which suggests that GAGs do not inhibit transduction simply because they are highly negatively charged polymers. When GAGs were used in combination with a cationic polymer (Polybrene), however, their inhibitory activity was neutralized, and interestingly, at optimal doses of GAG and Polybrene, transduction efficiency was actually enhanced by as much as 72%. In contrast, the inhibitory activity of CSPG, due to the influence of its core protein, was not substantially reduced by Polybrene. The importance of these findings to our understanding of retrovirus-cell interactions and to the development of more efficient retrovirus gene transfer protocols is discussed.  相似文献   

8.
The precursor protein to the chick corneal keratan sulfate proteoglycan was identified by immunoprecipitation with antiserum to its core protein from lysates of [35S]methionine-pulsed corneas and corneal fibroblasts in cell culture. Antiserum to the keratan sulfate proteoglycan immunoprecipitated a doublet of Mr 52,000 and 50,000 and minor amounts of a Mr 40,000 protein from pulsed corneas. Pulse-chase experiments, which permitted the conversion of the precursor proteins to proteoglycans and digestion of the glycosaminoglycans on immunoprecipitated proteoglycans with keratanase or chondroitinase ABC, showed that the Mr 52,000-50,000 doublet was converted to a keratan sulfate proteoglycan and the Mr 40,000 protein was converted to a chondroitin sulfate proteoglycan. Chick corneal fibroblasts in cell culture primarily produced the smaller (Mr50,000) precursor protein, and in the presence of tunicamycin the precursor protein size was reduced to Mr35,000, which indicates that the core protein contains approximately five N-linked oligosaccharides. Pulse-chase experiments with corneal fibroblasts in culture showed that the precursor protein was processed and secreted into the medium. However, its sensitivity to endo-beta-galactosidase and resistance to keratanase indicate that the precursor protein was converted to a glycoprotein with large oligosaccharides and not to a proteoglycan. This suggests that, although the precursor protein for the proteoglycan is produced in cultured corneal fibroblasts, the sulfation enzymes for keratan sulfate may be absent.  相似文献   

9.
The synthesis of proteoglycans by aorta explants from rabbits with diet-induced atherosclerosis and controls was studied by 35S-incorporation. Proteoglycans were isolated under dissociative conditions from incubation medium and from arterial explants. Additionally, the tissue proteoglycans that were not extracted by 4 M guanidine-HCl were solubilized by digestion of the tissue by elastase in the presence of proteinase inhibitors. The residual tissue was hydrolyzed by papain and glycosaminoglycans were isolated. The atherosclerotic aorta tissue incorporated twice the amount of 35S into proteoglycans than observed for controls; in both groups about 70% of the label incorporated into the tissue was noted in the proteoglycans extracted by guanidine-HC;, while about 30% of the total 35S-labeled proteoglycans synthesized by the explants were found in the media. Atherosclerotic tissue incorporated 35S predominantly into chondroitin sulfate proteoglycans when compared to control tissue. The chondroitinase ABC-digestable proteoglycans that were extracted by guanidine-HCl from atherosclerotic tissues were of larger molecular size than those from control tissue, but the core proteins from these preparations were similar. The heparan sulfate proteoglycan that was obtained by dissociative extraction from atherosclerotic tissue had greater amounts of N-acetyl and lesser amounts of N-sulfate ester groups than the preparation from control tissue. Digestion of the tissue by elastase yielded heparan sulfate proteoglycan as the major constituent in both groups, although atherosclerotic tissue contained relatively small amounts of this proteoglycan. The residual tissue from both groups contained chondroitin sulfate and heparan sulfate as the major glycosaminoglycans with the latter showing a decrease with atherosclerosis. Atherosclerotic tissue secreted into the medium about two-fold more 35S-labeled proteoglycans with larger molecular size than control tissue; proteoglycans of the heparan sulfate and chondroitin sulfate types were the major constituents in the culture medium of both tissues. Thus, proteoglycans undergo both quantitative and qualitative changes in atherosclerosis, reflecting the enhanced smooth muscle cell activity. These changes are potentially important in modulating lipoprotein binding and hemostatic properties, as well as fibrillogenesis of the arterial wall.  相似文献   

10.
The chondroitin sulfate proteoglycans of brain contain several core proteins bearing HNK-1 antibody epitopes. Endo-beta-galactosidase treatment resulted in the almost complete disappearance of HNK-1 staining of proteoglycan immunoblots, indicating that a significant portion of the 3-sulfated sugar residues recognized by this antibody are present on poly(N-acetyllactosaminyl) oligosaccharides. However, after treatment with chondroitinase ABC followed by endo-beta-galactosidase, several proteoglycan species showed HNK-1 reactivity, presumably due to the presence of this epitope on other oligosaccharides which are both resistant to endo-beta-galactosidase and inaccessible to the antibody in the native proteoglycan. Immunostaining of the endo-beta-galactosidase degradation products after separation by thin-layer chromatography demonstrated that HNK-1 reactivity was confined to a minor population of large oligosaccharides. Only a relatively small portion of the native chondroitin sulfate proteoglycans of brain enter a 6-12% SDS-polyacrylamide gel. However, after treatment of the proteoglycans with chondroitinase ABC (or chondroitinase and endo-beta-galactosidase) in the presence of protease inhibitors, seven bands with molecular sizes ranging from 80 to 200 kDa appear in Coomassie Blue stained gels, and two additional bands with molecular sizes of 67 and 350-400 kDa are apparent in fluorographs of sodium [35S]sulfate labeled proteoglycans. Most of these components probably represent individual proteoglycan species rather than different degrees of nonchondroitin sulfate/keratan sulfate glycosylation of a single protein core, since [35S]methionine-labeled proteins of comparable molecular size were synthesized by an in vitro translation system. These findings suggest that chondroitin sulfate proteoglycans which differ in molecular size and composition may be specific to particular cell types in brain.  相似文献   

11.
Transforming growth factor-β (TGF-β) is normally secreted in a latent form, and plasmin-mediated proteolytic cleavage of latency-associated peptide (LAP), a component of latent TGF-β complex that makes the complex inactive, activates latent TGF-β. In the present study, we investigated the possible involvement of calpain, one of the cysteine proteases, in the activation of latent TGF-β. When recombinant latent TGF-β was incubated with calpain (1–10 u/ml) in a test tube, calpain cleaved LAP and released mature TGF-β from the latent complex. When calpain was applied to cultured bovine capillary endothelial (BCE) cells, a low concentration of calpain (0.05–0.1 u/ml) inhibited the migration and proliferation of the cells, and these inhibitory effects were abrogated by anti-TGF-β antibody as well as by calpain inhibitor peptide, but not by α2-antiplasmin, a specific inhibitor of plasmin. Active TGF-β was detected in the conditioned medium of BCE cells collected in the presence of calpain. Chemical cross-linking of 125I-calpain to BCE cells followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that calpain bound to the cell surface through chondroitinase ABC-sensitive proteoglycan. In addition, treatment of the BCE cells with chondroitinase ABC abrogated the inhibitory effect of calpain on the migration of these cells. Our data thus suggest that calpain is able to activate latent TGF-β through a mechanism independent of plasmin. This activation is efficient in the presence of cells, and calpain binds to the cell surface via proteoglycan and activates latent TGF-β, which is targeted to the same surface. J. Cell. Physiol. 174:186–193, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

13.
The cell-associated proteoglycans synthesized by three dog mastocytoma cell lines were isolated and their structural features compared. The lines were propagated as subcutaneous tumors in athymic mice for over 25 generations. In primary cell culture, all three lines incorporated [35S]sulfate into high molecular weight proteoglycans which were heterogeneous in size and glycosaminoglycan content. Two lines, BR and G, synthesized both a heparin proteoglycan (HPG) and a chondroitin sulfate proteoglycan (ChSPG) in different proportions. The third line, C2, synthesized predominantly a ChSPG with little or no detectable heparin. Gel filtration of the 35S-labeled HPG and ChSPG from the BR line on Sepharose CL-4B in dissociative conditions (4 M guanidine, Triton X-100) yielded a major polydisperse peak (Kav = 0.22) accounting for 70% of 35S activity. Under aggregating conditions (0.1 M sodium acetate) on Sepharose CL-4B, the BR proteoglycans eluted in the excluded volume. Proteoglycans from lines G and C2 also eluted in the void volume under nondissociative conditions, however the C2 line yielded additional fractions of smaller hydrodynamic size (Kav = 0.81) suggesting the presence of intracellular proteoglycan cleavage products or incompletely processed proteoglycans. As assessed by dissociative chromatography on Sepharose CL-4B, proteoglycans from the BR line were resistant to proteinase cleavage under conditions which degraded a rat chondrosarcoma proteoglycan. For all lines, glycosaminoglycans released by pronase/alkaline-borohydride had molecular weights ranging from 20,000 to 50,000 on gel filtration. For line BR, 75% of 35S-labeled glycosaminoglycans were degraded to oligosaccharides by nitrous acid, and the remaining 25% were degraded by chondroitinase ABC. Corresponding percentages for line G were 89% and 11%, and for line C2, 2% and 98%. Paper chromatography of the chondroitinase digestion products from lines BR and C2 showed products corresponding to unsaturated standards delta Di-diSB and delta Di-diSE, derived from the disaccharides IdoUA-2-SO4----GalNAc-4-SO4 and GlcUA----GalNAc-4,6-diSO4 respectively, in addition to smaller amounts of monosulfated disaccharides. Glycans from lines C2 and BR contained small quantities of a trisulfated disaccharide which was degraded to delta Di-diSB upon incubation with chondro-6-sulfatase. The results demonstrate the simultaneous presence of heparin and polysulfated chondroitin sulfate in dog mast cells of clonal origin.  相似文献   

14.
The biologic properties of two major proteoglycans of bovine aorta, heparan sulfate proteoglycan and chondroitin sulfate-dermatan sulfate proteoglycan were compared. The heparan sulfate proteoglycan was isolated either by elastase digestion or by 4.0 M guanidine hydrochloride extraction, of aorta tissue, fractionated by CsCl isopycnic centrifugation and purified by chondroitinase ABC treatment. The first method resulted in considerably greater yield (about 70% of the total heparan sulfate proteoglycan of the tissue) than the second procedure (12% of total). The chondroitin sulfate-dermatan sulfate proteoglycan was obtained by 4.0 M guanidine-HCl extraction of aorta tissue followed by CsCl isopycnic centrifugation. The chemical composition of both heparan sulfate proteoglycan preparations was similar. Unlike the chondroitin sulfate-dermatan sulfate proteoglycan, which eluted in the void volume of Sepharose CL-6B column, the heparan sulfate proteoglycan preparations were each resolved into a high molecular weight fraction (kav = 0.18 and 0.13) and a low molecular weight fraction (kav = 0.47 and 0.36). The heparan sulfate proteoglycan preparations exhibited significantly more potent anticoagulant and platelet aggregation inhibitory activities than the chondroitin sulfate-dermatan sulfate proteoglycan. The protein core of the proteoglycan molecules did not seem to be essential for their hemostatic properties. The complex forming ability of the heparan sulfate proteoglycan with serum low density lipoproteins (LDL) was much less than that of chondroitin sulfate-dermatan sulfate proteoglycan in the presence and absence of Ca2+. Interaction between heparan sulfate proteoglycan and LDL was also much more sensitive to changes in the ionic strength of the medium than that of chondroitin sulfate-dermatan sulfate proteoglycan and the lipoprotein. Since the total sulfate content of both proteoglycans is almost similar, the smaller molecular size and hence the lower overall charge density of the heparan sulfate proteoglycan appears to be partly responsible for its low affinity for LDL. The differences in biologic properties of the two proteoglycans might have implications in the pathophysiology of cardiovascular diseases.  相似文献   

15.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

16.
A high-performance liquid chromatography method for analyzing disaccharides derived from chondroitin sulfate glycosaminoglycans has been developed which employs a Whatman Partisil-10 PAC amino-cyano column and an acetonitrile/methanol/ammonium acetate solvent to resolve disulfated, monosulfated, and unsulfated disaccharides in a chromatographic run of less than 20 min. The single known trisulfated chrondroitin disaccharide can be eluted in an alternate solvent system containing the same mobile phase components in different proportions. Disaccharides were prepared for chromatography from glycosaminoglycans and proteoglycans of known compositions by digestion with chondroitinase ABC, with the exception of king crab cartilage glycosaminoglycan which was incubated sequentially with hyaluronidase and chondroitinase ABC. Disaccharides were extracted from the digestion mixtures in 80% ethanol, dried over nitrogen, resuspended in the HPLC solvent, and chromatographed at a flow rate of 1 ml/min. Unsaturated disaccharides in the column eluate were detected by continuous ultraviolet absorbance monitoring at 232 nm; alternatively, fractions were collected and assayed for uronic acid content or radioactivity. By utilizing the HPLC technique in conjunction with chondroitinase ABC and AC digestion and sulfatase hydrolysis, the epimeric structures of chondroitin sulfates E and H were confirmed. With this technique, rapid and reproducible analyses of chondroitin sulfate disaccharides generated from mouse mast cell proteoglycan and from glycosaminoglycans of squid cranial cartilage, shark skin, hagfish skin, and hagfish notocord were in close agreement with compositions obtained by other techniques.  相似文献   

17.
35S-Labeled proteoglycans produced by chondrocytes from immature and mature rabbits were fractionated on associative CsCl gradients. In all cultures, greater than 85% of the incorporated radioactivity was present in the A1 fraction (rho 1.60) as chondroitin sulfate/keratin sulfate-substituted aggregating proteoglycan monomer; the remainder was present in small proteoglycans in the A2, A3, and A4 fractions of low buoyant densities (rho 1.53, 1.45, 1.37, respectively). Detailed glycosaminoglycan analysis of the A2, A3, and A4 fractions showed dermatan sulfate-rich species were present throughout. However, in both immature and mature cultures, 30-45% of the glycosaminoglycans in the A3/A4 combined fractions were present as keratan sulfate, as shown by insensitivity to digestion with chondroitinase ABC, specific digestion with endo-beta-galactosidase, and reactivity with antibody 5D4. Immature and mature chondrocytes synthesized very similar amounts of the low buoyant density keratan sulfate proteoglycan on a per cell basis. Moreover, 51 and 37% of the total keratan sulfate produced by immature and mature chondrocytes, respectively, were present in the low buoyant density proteoglycan. Pulse-chase experiments indicated that the low buoyant density keratan sulfate was not derived from the large aggregating proteoglycan by proteolysis in the extracellular space. The small keratan sulfate proteoglycans appear to be present as a species distinct from the small dermatan sulfate proteoglycans in these cultures in that they can be separated on Q-Sepharose chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent size (40-60 kDa), composition, and heterogeneity of the keratan sulfate proteoglycans suggest that they may be related to the small keratan sulfate proteoglycans of cornea.  相似文献   

18.
The majority of glycosaminoglycans synthezied in peritoneal macrophages from the guinea pig in vitro were secreted into culture medium. The secreted glycosaminoglycans were reduced in size with alkali treatment, indicating that the glycosaminoglycanas existed in the form of proteoglycans. After the glycosaminoglycans were digested with chondroitinase AC and ABC, the high voltage paper electrophoretic analysis and the descending paper chromatographic analysis indicated the presence of a considerable amount of unsaturated disulfated disaccharides. Based on the enzymatic assay with chondro-4- and 6-sulfatase, the positions of sulfation in the disulfated disaccharide have been identified as the 4- and 6-position of N-acetylgalactosamine, Moreover, the results of the ion-exchange chromatography and the chondroitinase AC and ABC digestion indicate that ΔDi-diSE derived from dermatan sulfate. This suggests that peritoneal macrophages are capable of synthesizing oversulfated proteodermatan sulfate as main component. The proportion of synthesized oversulfated dermatan sulfate to the total glycosaminoglycans was independent of the incubation time, and the distribution of oversulfated dermatan sulfate in cell and incubation medium also did not change. After exposure of macrophages to Escherichia coli for 15 min, the incorporation of [35S]sulfate and [3H]glucosamine into the glycosaminoglycans was increased by about 40% with no significant change in the proportion of synthesized oversulfated dermatan sulfate, but the relese of glycosaminoglycans into the culture medium remains essentially unchanged. The difference of the existence of oversulfated dermatan sulfate is not yet understood.  相似文献   

19.
20.
Summary In addition to containing Type IV collagen, laminin and entactin, basement membranes contain small amounts of proteoglycans substituted primarily with heparan sulfate chains. We have previously shown, however, that parietal yolk sacs in organ culture synthesize predominantly chondroitin sulfate proteoglycan. In the present study, we have used histochemical and immunohistochemical techniques coupled with chondroitinase ABC digestion to provide evidence for the presence of chondroitin sulfate proteoglycan in the basement membrane (Reichert's membrane) of the 14.5-day rat embryo parietal yolk sac. The results revealed numerous cuprolinic blue-positive filaments and granules, 20–30 nm in greater length or diameter, dispersed throughout the thickness of the basement membrane. Both structures were removed by preincubating freshly isolated parietal yolk sacs with chondroitinase ABC. A similar labeling pattern was also obtained with immunoelectron microscopy using gold-labeled monoclonal anti-bodies directed against the three major isomers of protein-bound chondroitin sulfate. In contrast, coarser cuprolinic blue granules, 40–100 nm in diameter, were neither sensitive to chondroitinase ABC digestion nor labeled by the monoclonal antibodies. These results thus indicate that Reichert's membrane contains chondroitin sulfate proteoglycan in addition to heparan sulfate proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号