首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

2.
UDP-GlcNAc:Gal beta 1-3GalNAc-R beta 1,6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) (i.e., core 2 GlcNAc-T) is a developmentally regulated enzyme of the O-linked oligosaccharide biosynthesis pathway. We have developed a coupled-enzyme assay for core 2 GlcNAc-T that is approximately 100 times more sensitive than the standard assay using UDP-[3H]GlcNAc as a sugar donor. Core 2 GlcNAc-T reactions were performed using unlabeled UDP-GlcNAc donor and Gal beta 1-3GalNAc alpha-paranitrophenyl (pNp) as acceptor. The product, Gal beta 1-3(GlcNAc beta 1-6)GalNAc alpha-pNp was then further reacted with purified bovine beta 1-4Gal-T and UDP-[3H]Gal to produce Gal beta 1-3([3H]Gal beta 1-4GlcNAc beta 1-6) GalNAc alpha-pNp, which was separated on an Ultrahydrogel HPLC column. Approximately 10% of the available GlcNAc-terminating acceptor was substituted in the Gal-T reaction, allowing 1 pmol of product to be readily detected. The increased sensitivity of the coupled assay should facilitate studies of core 2 GlcNAc-T activity where material is limiting or specific activity is low.  相似文献   

3.
Cell-free enzyme particles from mung bean seedlings catalyze the incorporation of mannose from GDP-[14C]mannose and GlcNAc from UDP-[3H]GlcNAc into glycolipids and into glycoprotein. The most rapidly labeled product from GDP-mannose was characterized as a mannosyl-phosphoryl-polyisoprenol, whereas that from UDP-GlcNAc was a mixture of GlcNAc-(pyro)phosphoryl-polyisoprenol and a disaccharide composed of two N-acetylglucosamine residues attached to the polyisoprenol by a phosphoryl or pyrophosphoryl linkage. Radioactivity from GDP-mannose and UDP-GlcNAc was also incorporated into more polar lipids which have been partially characterized as a series of oligosaccharide-(pyro)phosphoryl-lipids. The mannose-labeled oligosaccharides released from these lipids by mild acid hydrolysis were found to contain GlcNAc at their reducing end indicating that these oligosaccharides contain both GlcNAc and mannose. Both the GlcNAc-labeled and the mannose-labeled oligosaccharides gave multiple radioactive peaks upon paper chromatography indicating that they are composed of a series of different sized oligosaccharides. Finally, radioactivity from GDP-[14C]mannose and UDP-[3H]GlcNAc is incorporated into an insoluble component. Ten percent of the mannose label and all of the GlcNAc label in this insoluble material could be solubilized by digestion with Pronase. The glycopeptides released by Pronase digestion appeared to be approximately the same size as the oligosaccharides from the lipid-linked oligosaccharides based on gel filtration chromatography on Sephadex G-50. The results are consistent with a mechanism for glycoprotein synthesis involving lipid-linked oligosaccharide intermediates.  相似文献   

4.
The heteropolysaccharide chains of enterobacterial common antigen (ECA) are made up of linear trisaccharide repeat units with the structure----3)-alpha-D-Fuc4NAc-(1----4)- beta-D-ManNAcA-(1----4)-alpha-D-GlcNAc-(1----, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. The assembly of these chains involves lipid-linked intermediates, and both GlcNAc-pyrophosphorylundecaprenol (lipid I) and ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) are intermediates in ECA biosynthesis. In this study we demonstrated that lipid II serves as the acceptor of Fuc4NAc residues in the assembly of the trisaccharide repeat unit of ECA chains. Incubation of Escherichia coli membranes with UDP-GlcNAc, UDP-[14C]ManNAcA, and TDP-[3H]Fuc4NAc resulted in the synthesis of a radioactive glycolipid (lipid III) that contained both [14C]ManNAcA and [3H]Fuc4NAc. The oligosaccharide moiety of lipid III was identified as a trisaccharide by gel-permeation chromatography, and the in vitro synthesis of lipid III was dependent on prior synthesis of lipids I and II. Accordingly, the incorporation of [3H]Fuc4NAc into lipid III from the donor TDP-[3H]Fuc4NAc was dependent on the presence of both UDP-GlcNAc and UDP-ManNAcA in the reaction mixtures. In addition, the in vitro synthesis of lipid III was abolished by tunicamycin. Direct conversion of lipid II to lipid III was demonstrated in two-stage reactions in which membranes were initially incubated with UDP-GlcNAc and UDP-[14C]ManNAcA to allow the synthesis of radioactive lipid II. Subsequent addition of TDP-Fuc4Nac to the washed membranes resulted in almost complete conversion of radioactive lipid II to lipid III. The in vitro synthesis of lipid III was also accompanied by the apparent utilization of this lipid intermediate for the assembly of ECA heteropolysaccharide chains. Incubation of membranes with UDP-[3H]GlcNAc, UDP-ManNAcA, and TDP-Fuc4NAc resulted in the apparent incorporation of isotope into ECA polymers, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. In addition, the in vitro incorporation of [3H]Fuc4NAc into ECA heteropolysaccharide chains was demonstrated with ether-treated cells that were prepared from delta rfbA mutants of Salmonella typhimurium. These mutants are defective in the synthesis of TDP-Fuc4NAc; as a consequence, they are also defective in the synthesis of lipid III and they accumulate lipid II. Accordingly, incubation of ether-permeabilized cells of delta rfbA mutants with TDP-[3h]Fuc4NAc resulted in the incorporation of isotope into both lipid III and ECA heteropolysaccharide chains.  相似文献   

5.
The lipid-linked oligosaccharide synthesized in vitro, in the presence of 1.0 microM UDP-[3H]Glc, GDP-[14C]Man, and UDP-GlcNAc has been isolated and the structure of the oligosaccharide has been analyzed. The oligosaccharide contains 2 N-acetylglucosamine, 9 mannose, and 3 glucose residues. The N-acetylglucosamine residues are located at the reducing terminus. The 3 glucose residues are arranged in a linear order at one of the nonreducing termini in the sequence Glc 1,2--Glc 1,3--Glc--(Man)9 (GlcNAc)2. The structural analysis was made possible largely by the availability of glucosidase preparations of fungal anad microsomal origin which remove glucose residues from the oligosaccharide without releasing mannose residues.  相似文献   

6.
S Soulier  P Gaye 《Biochimie》1981,63(7):619-628
The results of subcellular fractionation of sheep mammary gland membranes indicate that N-acetylgalactosaminyl polypeptide transferase and galactosyl-N-acetylgalactosaminyl transferase, which are involved in the assembly of disaccharide units of kappa-casein, are localized chiefly in Golgi membranes. The glycosyltransferase activities incorporating N-acetyl [1-14C] galactosamine and [U-14C] galactose from uridine diphosphate N-acetyl [1-14C] galactosamine and uridine diphosphate [U-14C] galactose, respectively, were measured after membrane solubilization with Triton X-100 either with unglycosylated caseinomacropeptide, or with this polypeptide containing the N-acetylgalactosamine side chain residues (desialylated and degalactosylated caseinomacropeptide). Radioactive N-acetylgalactosamine was incorporated in the unglycosylated acceptor peptide, and the glycosidic bonds in the product were alkali labile, suggesting that they were linked to the hydroxyamino acid residues. In addition radioactive N-acetylgalactosamine was released after alpha N-acetyl-D-galactosaminidase treatment of labelled caseinomacropeptide. [U-14C] galactose was incorporated in the desialylated and degalactosylated acceptor peptide. Reductive alkaline treatment of [U-14C] galactose peptide resulted in the release of a major product, the chromatographic properties of which in TLC were identical with authentic galactosyl (1 leads to 3) N-acetylgalactosaminitol. The structure of the labelled disacchariditol determined after periodate oxidation (two equivalents) by gas liquid chromatography-mass spectrometry revealed that the [U-14C] galactose was linked to position C-3 on the N-acetylgalactosaminyl-residue. The anomery of the galactose, as determined by a chemical method, indicates unambiguously a beta configuration.  相似文献   

7.
Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions.  相似文献   

8.
Novikoff ascites tumor cell homogenate was found to catalyze the transfer of [14C]N-acetylglucosamine from UDP-[14C]GlcNAc to asialo-alpha 1-acid glycoprotein. Mucins appeared to be poor acceptors. Methylation and hydrolysis of the product formed in an incubation with UDP-GlcNAc and asialo-alpha 1-acid [3H]glycoprotein yielded 2,4,6-trimethyl [3H]galactose and 2,3,4-trimethyl [3H]galactose, indicating that N-acetylglucosaminyl residues were introduced to position C-3 and C-6 of the terminal galactoses on the glycoprotein. It is concluded that Novikoff cells contain two N-acetylglucosaminyltransferases which might be involved in the synthesis of linear and branched forms of cell surface polylactosaminoglycans and blood group I/i antigenic structures.  相似文献   

9.
Crude membrane preparations from chick embryo cells catalyse the formation of dolichyl-di-N-acetylchitobiosyl diphosphate [Dol-PP-(GlcNAc)2] from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The formation of this glycolipid was stimulated by exogenous dolichyl phosphate and inhibited by tunicamycin. Adding GDP-mannose to the cell-free system containing Dol-PP-(GlcNAc)2 by preincubation led to the formation of a lipid-linked oligosaccharide, containing 8--9 sugar residues. The formation of lipid-linked oligosaccharides was inhibited by GDP-2-deoxy-D-glucose (GDP-dGlc): in this case Dol-PP-(Glc-NAc)2-dGlc accumulated. Subsequent additions of mannosyl residues to this trisaccharide-lipid to form lipid-linked oligosaccharides were not possible. Concomitantly the glycosylation of proteins was blocked. Partially inhibitory conditions were obtained by adding both GDP-dGlc and GDP-Man with an excess of GDP-dGlc. Glycosylation of proteins was observed but the glycopeptides did not contain 2-deoxyglucosyl residues. Also in these cases 2-deoxyglucose-containing glycolipids accumulated. The main glycolipid formed under these conditions was Dol-PP-(GlcNAc)2-Man-dGlc. Lipid-linked oligosaccharides containing 2-deoxyglucose were formed under these conditions, although in small amounts, but were not transferred to protein. So the molecular basis of the inhibitory action of 2-deoxyglucose on glycosylation of protein is the incorporation of 2-deoxyglucosyl residues during early phases of the biosynthesis of the lipid-linked oligosaccharides.  相似文献   

10.
The enzyme, phosphoenolpyruvate:uridine-5-diphospho-N-acetyl-2-amino-2-deoxyglucose-3-enolpyruvyltransferase, which catalyzes the transfer of enolpyruvate from phosphoenolpyruvate to uridine diphospho-N-acetylglucosamine with the liberation of Pi, was found to form a covalent intermediate with the enolpyruvate moiety. Radioactivity from [1-14-C]phosphoenolpyruvate in the forward reaction and from UDP-GlNAc-[1-14-C]enolpyruvate in the reverse reaction was incorporated into the enzyme and remained bound to the protein after precipitation with ammonium sulfate or treatment with sodium dodecyl sulfate and heat. This incorporation from UDP-GlcNAc-[1-14-C]enolpyruvate took place in the absence of Pi. When [32-P,1-14C]phosphoenolpyruvate was used, only 14-C appeared to be incorporated. In the forward reaction, the incorporation was contingent on the removal of UDP-GlcNAc from the transferase. Consistent with the formation of an enzyme-enolpyruvate intermediate, exchange of UDP-[6-3-H]GlcNAc with UDP-GlcNAc-enolpyruvate was observed in the absence of Pi. Nonstoichiometric incorporation of 3H from 3H2O into the product, UDP-GlcNAc-enolpyruvate, was observed and was shown to be due to a product isotope effect. Based on these observations, a mechanism of action for this enzyme is proposed which involves synchronous addition-elimination followed by a second addition-elimination step.  相似文献   

11.
We report on N-acetylgalactosaminyltransferase (UDPacetylgalactosamine--protein acetylgalactosaminyltransferase; EC 2.4.1.41) activity in herpes simplex virus type 1 (HSV-1)-infected BHK and RicR14 cells, a line of ricin-resistant BHK cells defective in N-acetylglucosaminyltransferase I. The enzyme catalyzed the transfer of [14C]N-acetylgalactosamine (GalNAc) from UDP-[14C]GalNAc into HSV glycoproteins, as identified by immunoprecipitation. The sugar was selectively incorporated into the immature forms of herpesvirus glycoproteins pgC, pgD, and gA-pgB, which are known to contain N-linked glycans of the high-mannose type. The high incorporation of [14C]GalNAc into endogenous acceptors of HSV-1-infected RicR14 cells was consistent with the accumulation of immature forms of HSV glycoproteins which occurs in these cells. Mild alkaline borohydride treatment of glycoproteins labeled via GalNAc transferase showed that the transferred GalNAc was O-linked and represented the first sugar added to the peptide backbone.  相似文献   

12.
J Balsamo  R S Pratt  J Lilien 《Biochemistry》1986,25(19):5402-5407
Homogenates of embryonic chick neural retina prepared in 1% Triton X-100 have the ability to transfer N-acetyl[32P]galactosamine [( 32P]GalNAc) from beta-32P-labeled uridine diphosphate N-acetylgalactosamine [( beta-32P]UDP-GalNAc) to endogenous macromolecular acceptors. The phosphotransferase activity sediments as three distinct peaks upon centrifugation on sucrose gradients. These peaks are coincident with the transferase/acceptor complexes previously described [Balsamo, J., & Lilien, J. (1982) J. Biol. Chem. 257, 345-354]. The parameters of the 32P transfer reaction closely parallel those observed with UDP-[3H]GalNAc as substrate when the densest particles, H, are used as a source of transferase/acceptors. Treatment of 3H- and 32P-labeled products with alpha-N-acetylgalactosaminidase removes [3H]GalNAc residues and exposes 32P-labeled groups. These data suggest that the sugar-phosphate is transferred intact, resulting in a terminal phosphodiester linkage. The resistance of the macromolecular products to digestion by endoglycosidase F and its sensitivity to hydrolysis under mild alkaline conditions suggest that the alpha-linked sugar is transferred to an oligosaccharide chain attached to the protein core via an O-serine or threonine residue. Characterization of the 32P- and 3H-labeled H particle products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a series of coincident high molecular weight polypeptides.  相似文献   

13.
We have examined the coupling and charge stoichiometry for UDP-GlcNAc transport into Golgi-enriched vesicles from rat liver. In the absence of added energy sources, these Golgi vesicles concentrate UDP-GlcNAc at least 20-fold, presumably by exchange with endogenous nucleotides. Under the conditions used, extravesicular degradation of UDP-GlcNAc has been eliminated, and less than 15% of the internalized radioactivity becomes associated with endogenous macromolecules. Of the remaining intravesicular label, 85% remains unmetabolized UDP-[3H]GlcNAc, and approximately 15% is hydrolyzed to [3H]GlcNAc-1-phosphate. Efflux of accumulated UDP-[3H]GlcNAc is induced by addition of UMP, UDP, or UDP-galactose to the external medium. Permeabilization of Golgi vesicles causes a rapid and nearly complete loss of internal UDP-[3H]GlcNAc, indicating that the results reflect transport and not binding. Moreover, transport of UDP-[3H]GlcNAc into these Golgi vesicles was stimulated up to 5-fold by mechanically preloading vesicles with either UDP-GlcNAc or UMP. The response of UMP/UMP exchange and UMP/UDP-GlcNAc exchange to alterations in intravesicular and extravesicular pH suggests that UDP-GlcNAc enters the Golgi apparatus in electroneutral exchange with the dianionic form of UMP.  相似文献   

14.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

15.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser and GlcAβ1-3Gal(4-O-sulfate)β1-3Galβ1-4Xylβ1-O-Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with α-N-acetylgalactosaminidase and β-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was α-linked, as in the product previously synthesized using serum enzymes, and not β-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAβ1-4GlcNAcα1-4]2-GlcAβ1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Biosynthesis of oligosaccharide-lipid in Streptococcus sanguis   总被引:3,自引:2,他引:1       下载免费PDF全文
An oligosaccharide-lipid containing N-acetyl d-glucosamine (GlcNAc), l-rhamnose, and d-glucose was synthesized when the particulate enzyme from Streptococcus sanguis was incubated with UDP-GlcNAc, TDP-rhamnose, and UDP-glucose. The incorporation of d-glucose into the lipid was dependent on the preincorporation of l-rhamnose, which in turn was dependent on that of GlcNAc. This indicates that the order of sugar incorporation is GlcNAc, l-rhamnose, and d-glucose. The synthesis of GlcNAc-lipid was stimulated twofold by ATP and was inhibited strongly by UDP and slightly by UMP, CDP, and TDP, but not by all other nucleoside diphosphates and nucleoside monophosphates tested. A [gamma-(32)P]ATP labeling experiment indicated that some acceptor lipid was present in nonphosphorylated form. The acid and alkaline stabilities of the GlcNAc-lipid were similar to those of glycosyl undecaprenylphosphate, and the thin-layer chromatographic mobility of the lipid was slightly faster than that of the mannosylphosphorylundecaprenol. The molar ratio of phosphate to GlcNAc in purified GlcNAc-lipid was found to be 0.96:1. These results suggested that the GlcNAc was attached to the lipid moiety, presumably undecaprenol, by phosphodiester bonds. The incorporation of l-rhamnose into the lipid was inhibited by UDP and UMP, respectively, in a manner similar to the incorporation of GlcNAc. This suggested that the oligosaccharide was also linked to the lipid moiety by phosphodiester bonds.  相似文献   

17.
The cell envelopes of serogroup C1 Salmonella, viz. S. thompson and S. montevideo, catalyze the transfer of radiolabeled sugars from UDP-[14C]Glc and UDP-[14C]GlcNAc into the lipid-linked sugars. Using TLC and DEAE-cellulose chromatography, the radiolabeled products were identified as polyprenyl pyrophosphate N-acetylglucosamine (I), polyprenyl monophosphate N-acetylglucosamine and polyprenyl monophosphate glucose. The derivative (I) served as an acceptor for mannose transfer from GDP-Man with formation of Man1-2GlcNAc1PPPre. A similar reaction was observed after addition of synthetic GlcNAc1PPPre to the cell envelopes.  相似文献   

18.
A specific and fast method for the determination of N-acetylglucosaminyltransferase III, IV and V activity in one assay is described. The method is based on the separation by HPLC of the three transferase products formed from the common acceptor oligosaccharide substrate GlcNAc beta 1----2Man alpha 1----3(GlcNAc beta 1----2Man alpha 1---- 6)Man beta 1----4GlcNAc. Assays are not interfered with by substances that result from enzymatic or chemical breakdown of the donor substrate UDP-[14C]GlcNAc. Using this assay system N-acetylglucosaminyltransferase III, IV and V activities were estimated in Novikoff ascites tumour cells, mouse lymphoma BW 5147 cells and hen oviduct.  相似文献   

19.
A particulate fraction from porcine aorta catalyzed the incorporation of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc into both GlcNAc-pyrophosphorylpolyprenol and GlcNAc-GlcNAc-pyrophosphorylpolyprenol. This transfer utilized endogenous lipid and required a divalent cation. Mn2+ was the best metal ion and was optimum at 2.3 mM. This same particulate fraction was previously shown to transfer mannose from GDP-[14C]mannose to endogenous lipid to form mannosylphosphorylpolyprenol (Chambers, J., and Elbein, A.D. (1975) J. Biol. Chem. 250, 6904-6915). Both the GlcNAc activities and the mannose activity were solubilized by treatment of the particulate fraction with the detergent Nonidet P-40. The enzymes were partially purified by chromatography on DEAE-cellulose and on Sephadex G-200. These soluble enzymes required the addition of acceptor lipid for activity. An acidic lipid fraction, isolated from pig liver and having the properties of dolichyl phosphate, was active with either the GlcNAc or the mannose transferase. Chemically synthesized dolichyl phosphate was also active with either of these enzymes. The products formed from either GlcNAc or mannose by the soluble transferases were similar to those formed by the particulate enzyme. Thus the major product formed from UDP-[3H]GlcNAc was GlcNAc-pyrophosphoryldolichol with small amounts of the disaccharide-lipid while the product formed from GDP-[14C]mannose was mannosylphosphoryldolichol.  相似文献   

20.
Biosynthesis of chondroitin sulfate. Chain termination   总被引:4,自引:0,他引:4  
Incubation of chick embryo epiphyseal microsomal preparations with either UDP-[14C]GlcUA or UDP-[14C]-GalNAc plus exogenous chondroitin 6-sulfate resulted in the incorporation of either a single [14C]GlcUA or a [14C]GalNAc onto the nonreducing ends of the exogenous glycosaminoglycan. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and [14C]GalNAc. Incubations of the microsomal preparations with either UDP-[14C]GlcUA or UDP-GalN[3H]Ac without exogenous chondroitin 6-sulfate resulted in the addition of a single sugar onto the nonreducing end of endogenous chondroitin sulfate. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and GalN[3H]Ac in a molar ratio of approximately 1:1:3.5. Incubations of the microsomal preparations with both UDP-[14C]-GlcUA and UDP-GalN[3H]Ac together resulted in formation of [14C,3H]chondroitin chains added to the endogenous chondroitin sulfate. Degradation by chondroitinase ABC resulted in products with a molar ratio of [14C,3H]Di-OS to GalN[3H]Ac varying from approximately 1:1.5 to 1:3. The results of these experiments indicate that chondroitin 6-sulfate terminates at its nonreducing end in a mixture of GlcUA and GalNAc (some sulfated). GalNAc is somewhat more frequent as the terminal sugar and adds more readily to endogenous acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号