首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.  相似文献   

2.
3.
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.  相似文献   

4.
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.  相似文献   

5.
6.
7.
啮总目包括啮虫目(皮虱和书虱)和虱目(羽虱和吸虱),是农业和医学等领域具有重要经济意义和研究价值的类群,目前已鉴定和描述的物种超过10 000个。啮总目昆虫线粒体基因组的变异性在昆虫各类群中最为剧烈,这些变异包括基因组的结构、基因排序、基因含量和链上分布等诸多方面。本文全面分析和总结了啮总目昆虫裂化线粒体基因组的进化属性,并结合两侧对称动物线粒体基因组的裂化特征重构了线粒体基因组环裂化的过程。引入“线粒体基因组核型”的概念来描述动物线粒体基因组丰富的变异程度。动物线粒体的染色体有减小的趋势,而线粒体基因组的裂化正是体现这种趋势的一种重要策略。同时,总结和探讨了目前具有争议的啮总目主要类群间的系统发育关系。本综述为啮总目昆虫线粒体基因组学、啮总目系统发生关系以及两侧对称动物线粒体基因组进化模式的研究提供一个新的视角。  相似文献   

8.
Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variable mtDNA region in many animal taxa, the CRs of crocodile newts are highly conservative. Rather, the genes of NADH dehydrogenase subunits and ATPase subunit 6 were found to have high sequence divergences and to be usable for population genetics studies. To estimate the inter-population divergence ages of E. andersoni endemic to the Ryukyu Islands, we performed molecular dating analysis using whole and partial mt genomic data. The estimated divergence ages of the inter-island individuals are older than the paleogeographic segmentation ages of the islands, suggesting that the lineage splits of E. andersoni populations were not caused by vicariant events. Our phylogenetic analysis with partial mt sequence data also suggests the existence of at least two more undescribed species in the genus Tylototriton. We also found unusual repeat sequences containing the 3' region of cytochrome apoenzyme b gene, whole tRNA-Thr gene, and a noncoding region (the T-P noncoding region characteristic in caudate mtDNAs) from T. verrucosus mtDNA. Similar repeat sequences were found in two other Tylototriton species. The Tylototriton taxa with the repeats become a monophyletic group, indicating a single origin of the repeat sequences. The intra-and inter-specific comparisons of the repeat sequences suggest the occurrences of homologous recombination-based concerted evolution among the repeat sequences.  相似文献   

9.
In this study, we analyse the evolutionary dynamics and phylogenetic implications of gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and four published mt genomes of isopod crustaceans. The sequence coverage is nearly complete for four of the five newly sequenced species, with only the control region and some tRNA genes missing, while in Janira maculosa only two thirds of the genome could be determined. Mitochondrial gene order in isopods seems to be more plastic than that in other crustacean lineages, making all nine known mt gene orders different. Especially the asellote Janira is characterized by many autapomorphies. The following inferred ancestral isopod mt gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control region, trnS1, cob, trnT, nad5, trnF. We consider the inferred gene translocation events leading to gene rearrangements as valuable characters in phylogenetic analyses. In this first study covering major isopod lineages, potential apomorphies were identified, e.g., a shared relative position of trnR in Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene order, namely a shared relative position of trnV in unrelated isopod lineages. In addition to increased taxon sampling secondary structure, modification in tRNAs and GC-skew inversion may be potentially fruitful subjects for future mt genome studies in a phylogenetic context.  相似文献   

10.
Our understanding of the phylogenetic relationships among tick lineages has been limited by the lack of resolution provided by the most commonly used phylogenetic markers. Mitochondrial genomes are increasingly used to address controversial phylogenetic relationships. To date, the complete mitochondrial genomes of eleven tick species have been sequenced; however, only three of these species are metastriate ticks, the most speciose lineage of ticks. In this study, we present the nucleotide sequences of the complete mitochondrial genomes of five more species of metastriate ticks: Amblyomma elaphense, Amblyomma fimbriatum, Amblyomma sphenodonti, Bothriocroton concolor and Bothriocroton undatum. We use complete mitochondrial genome sequences to address the phylogenetic placement of two morphologically 'primitive' species -Am. elaphense and Am. sphenodonti - with respect to the genus Amblyomma. Our analysis of these five mitochondrial genomes with the other eleven tick mitochondrial genomes, as well as analysis of nuclear rRNA genes, provides strong evidence that the genus Amblyomma is polyphyletic with the inclusion of Am. sphenodonti and Am. elaphense. A new genus or two new genera may be required to describe Am. sphenodonti and Am. elaphense. It is also possible that these two species are sisters to two established genera, Bothriocroton in the case of Am. sphenodonti, and Haemaphysalis in the case of Am. elaphense. However, other arrangements of these taxa cannot be excluded with the current data. Thus, while Am. sphenodonti and Am. elaphense do not belong in the genus Amblyomma, the phylogenetic placement of these two species cannot be resolved without more data from metastriate ticks, either greater sampling of mitochondrial genomes, or a large data set of nuclear genes.  相似文献   

11.
We investigated the population genetic structure and phylogenetic relationships of four morphospecies of Semisulcospira sampled from multiple South Korean drainages. One, S. extensa, displayed modest levels of genetic diversity and formed a species-specific clade for both mitochondrial (mt) and nuclear markers. In contrast, the other three, S. coreana, S. gottschei, and S. libertina, were polyphyletic for both mt and nuclear markers. They formed, together with other nominal congeners (S. forticosta, S. multicincta, S. nodiperda, and S. tegulata), a taxonomically heterogeneous species complex containing population-level admixtures of genotypes from numerically predominant modal clades in addition to rare, phylogenetically divergent, mt and nuclear genotypes. The modal mt haplotypes exhibited far more geographic than taxonomic congruence and typically co-clustered into drainage-specific tip clades, irrespective of nominal taxonomic status. The evolutionary origins of the observed non-extensa phylogenetic heterogeneity are unclear at present although the available data do not support paralogous mt marker phenomena or the presence of cryptic species. We cannot distinguish among retention of ancestral polymorphisms or recticulate evolutionary origins as explanatory mechanisms and it may require the genetic characterization of Semisulcospira lineages throughout much of their collective east Asian range to address this issue. Based on the available data, we consider it best to view all of our non-extensa Korean study taxa as a single polymorphic species complex of the type species S. libertina. There is considerable evidence that similarly complex genetic structuring, at least for mt, may be typical of many other freshwater cerithioidean snail taxa. In light of our Semisulcospira results, we suggest that meaningful molecular phylogenetic characterization of freshwater cerithioidean lineages may require the use of both mt and nuclear markers together with population level sampling of all nominal taxa within regional drainages.  相似文献   

12.
The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.  相似文献   

13.
Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.  相似文献   

14.
Despite Diplostomum baeri (Dubois, 1937) being one of the most widely distributed parasites of freshwater fish, there is no complete mitochondrial (mt) genome currently available. The complicated systematics presented by D. baeri has hampered investigations into the species distributions and infective dynamics of the species. Within this study we obtained complete mt genome sequences of D. baeri and assessed its phylogenetic relationship with other species of Digenea. The complete mitochondrial genome of D. baeri is 14,480 bp in length, containing 36 genes in total. The phylogenetic tree resulting from Bayesian inference of concatenated 12 protein coding gene sequences placed D. baeri alongside published mt genomes of Diplostomidae, with the overall taxonomic placement of the genus being a sister lineage of the order Plagiochiida The characterization of further mitochondrial genomes within the family Diplostomidae will help progress phylogenetic and epidemiological investigations as well as providing a framework for the analysis of diagnostic markers to be used in further monitoring of the parasite worldwide.  相似文献   

15.
An internal transcribed spacer (ITS2) sequence between the 5.8S and 28S rRNA genes was used to estimate the phyletic relationships among Ixodes spp. tick vectors of Lyme disease-causing Borrelia spirochetes. Analysis indicates that Borrelia burgdorferi sensu lato species associated with Lyme disease are found mainly in ticks of the Ixodes ricinus species complex. Other closely related tick species are not known to transmit the Borrelia-that cause Lyme disease in humans, but they appear to have a specific association with other closely related Borrelia species. There is a high degree of concordance in the phylogenetics of Borrelia taxa and the phylogenetic relationships among Ixodes ticks.  相似文献   

16.
The mackerel icefish (Champsocephalus gunnari Lönnberg, 1905) is a ray‐finned fish living in the Southern Ocean around Antarctica. We sequenced the complete mitochondrial (mt) genome of the mackerel icefish and a segment from cytochrome b to the control region (CR) in 32 individuals. The mt genome of the mackerel icefish was rearranged, containing two nicotinamide adenine dinucleotide (reduced form) dehydrogenase subunit 6 (ND6), two tRNAGlu, and two CRs. However, variations in numbers of ND6 and tRNAGlu were observed amongst individuals. These variations included type 1 (containing two ND6 and two tRNAGlu), type 2 (containing one ND6, one incomplete ND6, and one tRNAGlu), and type 3 (containing one ND6 and one tRNAGlu). The gene orders of types 1 and 2, and variations in numbers of ND6 and tRNAGlu were not previously found in any Antarctic notothenioids, whereas type 3 is the same as that of Racovitzia glacialis. Phylogenetic analyses of CR DNA sequences showed that duplicated CRs of the same species formed a monophyletic group, suggesting that duplication of CRs occurred in each species. The frequent duplication of mt genomes in Antarctic notothenioids is an unusual feature in vertebrates. We propose that interspecific hybridization and impairment of mismatch repair might account for the high frequency of gene duplications and rearrangement of mt genomes in Antarctic notothenioids.  相似文献   

17.
We determined the complete nucleotide sequence of the mitochondrial (mt) genome of a Malagasy poison frog, Mantella madagascariensis (family Mantellidae), and partial sequences of two Mantella (M. baroni and M. bernhardi) and two additional mantellid species (Boophis madagascariensis and Mantidactylus cf. ulcerosus). The M. madagascariensis genome was shown to be the largest (23kbp) of all vertebrate mtDNAs investigated so far. Furthermore, the following unique features were revealed: (1) the positions of some genes and gene regions were rearranged compared to mitochondrial genomes typical for vertebrates and other anuran groups, (2) two distinct genes and a pseudogene corresponding to transfer RNA gene for methionine (tRNA-Met) were encoded, and (3) two control regions with very high sequence homology were present. These features were shared by the two other Mantella species but not the other mantellid species, indicating dynamic genome reorganization in a common ancestor linage before divergence of the Mantella genus. The reorganization pathway could be explained by a model of gene duplication and deletion. Duplication and deletion events also seem to have been responsible for concerted sequence evolution of the control regions in Mantella mt genomes. It is also suggested that the pseudo tRNA-Met gene sustained for a long time in Mantella mt genomes possibly functions as a punctuation marker for NADH dehydrogenase subunit (ND) 2 mRNA processing. Phylogenetic analyses employing a large sequence data set of mt genes supported the monophyly of Mantellidae and Rhacophoridae and other recent phylogenetic views for ranoid frogs. The resultant phylogenetic relationship also suggested parallel occurrence of two tRNA-Met genes, duplicated control regions, and ND5 gene translocation in independent ranoid lineages.  相似文献   

18.
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. Two factors inhibiting our understanding the evolution of gene rearrangement in bivalves are inadequate taxonomic sampling and failure to examine gene order in a phylogenetic framework. Here, we report the first complete nucleotide sequence (16,060 bp) of the mitochondrial (mt) genome of a North American freshwater bivalve, Lampsilis ornata (Mollusca: Paleoheterodonta: Unionidae). Gene order and mt genome content is examined in a comparative phylogenetic framework for Lampsilis and five other bivalves, representing five families. Mitochondrial genome content is shown to vary by gene duplication and loss among taxa and between male and female mitotypes within a species. Although mt gene arrangement is highly variable among bivalves, when optimized on an independently derived phylogenetic hypothesis, it allows for the reconstruction of ancestral gene order states and indicates the potential phylogenetic utility of the data. However, the interpretation of reconstructed ancestral gene order states must take in to account both the accuracy of the phylogenetic estimation and the probability of character state change across the topology, such as the presence/absence of atp8 in bivalve lineages. We discuss what role, if any, doubly uniparental inheritance (DUI) and recombination between sexual mitotypes may play in influencing gene rearrangement of the mt genome in some bivalve lineages.  相似文献   

19.
Mesostigmata is an extremely diverse group of mites with more than 11,000 described species in 109 families. The complete mitochondrial (mt) genomes of five species of mesostigmatid mites from three families (Varroidae, Ologamasidae, Phytoseiidae) have been reported previously; all of them are rearranged or highly rearranged in gene order. However, it is unclear when mt genome reorganization occurred and how common it is in mesostigmatid mites. We sequenced the mt genomes of ten species of mesostigmatid mites from five more families (Blattisociidae, Diplogyniidae, Laelapidae, Macrochelidae, Parasitidae). We found that species in the families Diplogyniidae and Parasitidae have retained the ancestral mt genome organization of arthropods, which is in stark contrast to the highly rearranged mt genomes in the Phytoseiidae species. As in the Varroidae and Ologamasidae species, the mt genomes of the Blattisociidae, Macrochelidae and Laelapidae species are also rearranged but are less rearranged than in the Phytoseiidae species. Each of the six mesostigmatid families that have rearranged mt genomes is characterized by unique gene order not seen in other mesostigmatid families. Furthermore, the mt genome organization also differs among three genera of the Phytoseiidae, between two genera of the Laelapidae, and among three Macrocheles species of the Macrochelidae. Our results indicate that: (a) the most recent common ancestor of mesostigmatid mites likely retained the ancestral mt genome organization of arthropods; and (b) mt genome organization characterizes various lineages of mesostigmatid mites and provides a valuable source of information for understanding their phylogeny and evolution.  相似文献   

20.
Hlinka O  Murrell A  Barker SC 《Heredity》2002,88(4):275-279
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号