首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When l-methionine-dl-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 mumol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of l-methionine-dl-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors l-methionine-dl-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.  相似文献   

2.
3.
The KdpB polypeptides in the cyanobacterium Anabaena torulosa were shown to be two membrane-bound proteins of about 78 kDa, expressed strictly under K(+) deficiency and repressed or degraded upon readdition of K(+). In both Anabaena and Escherichia coli strain MC4100, osmotic and ionic stresses caused no significant induction of steady-state KdpB levels during extreme potassium starvation.  相似文献   

4.
The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.  相似文献   

5.
Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content   总被引:2,自引:1,他引:1       下载免费PDF全文
The elemental and molecular composition, pigment content, and productivity of a phycoerythrin-rich nitrogen-fixing cyanobacterium—an Anabaena strain isolated from the coastal lagoon Albufera de Valencia, Spain—has been investigated. When compared with other heterocystous species, this strain exhibits similar chlorophyll a, carotene, and total phycobiliprotein contents but differs remarkably in the relative proportion of specific phycobiliproteins; the content of C-phycoerythrin amounts to 8.3% (versus about 1% in the other species) of cell dry weight. Absorption and fluorescence spectra of intact phycobilisomes isolated from this Anabaena sp. corroborate the marked contribution of phycoerythrin as an antenna pigment, a circumstance that is unusual for cyanobacteria capable of fixing N2. The pigment content of cells is affected by variations in irradiance and cell density, these adaptive changes being more patent for C-phycoerythrin than for phycocyanins. The Anabaena strain is clumpy and capable of rapid flocculation. It exhibits outdoor productivities higher than 20 g (dry weight) m−2 day−1 during summer.  相似文献   

6.
The bicistronic groESL operon, encoding the Hsp60 and Hsp10 chaperonins, was cloned into an integrative expression vector, pFPN, and incorporated at an innocuous site in the Anabaena sp. strain PCC7120 genome. In the recombinant Anabaena strain, the additional groESL operon was expressed from a strong cyanobacterial PpsbA1 promoter without hampering the stress-responsive expression of the native groESL operon. The net expression of the two groESL operons promoted better growth, supported the vital activities of nitrogen fixation and photosynthesis at ambient conditions, and enhanced the tolerance of the recombinant Anabaena strain to heat and salinity stresses.Nitrogen-fixing cyanobacteria, especially strains of Nostoc and Anabaena, are native to tropical agroclimatic conditions, such as those of Indian paddy fields, and contribute to the carbon (C) and nitrogen (N) economy of these soils (22, 30). However, their biofertilizer potential decreases during exposure to high temperature, salinity, and other such stressful environments (1). A common target for these stresses is cellular proteins, which are denatured and inactivated during stress, resulting in metabolic arrest, cessation of growth, and eventually loss of viability. Molecular chaperones play a major role in the conformational homeostasis of cellular proteins (13, 16, 24, 26) by (i) proper folding of nascent polypeptide chains; (ii) facilitating protein translocation and maturation to functional conformation, including multiprotein complex assembly; (iii) refolding of misfolded proteins; (iv) sequestering damaged proteins to aggregates; and (v) solubilizing protein aggregates for refolding or degradation. Present at basal levels under optimum growth conditions in bacteria, the expression of chaperonins is significantly enhanced during heat shock and other stresses (2, 25, 32).The most common and abundant cyanobacterial chaperones are Hsp60 proteins, and nitrogen-fixing cyanobacteria possess two or more copies of the hsp60 or groEL gene (http://genome.kazusa.or.jp/cyanobase). One occurs as a solitary gene, cpn60 (17, 21), while the other is juxtaposed to its cochaperonin encoding genes groES and constitutes a bicistronic operon groESL (7, 19, 31). The two hsp60 genes encode a 59-kDa GroEL and a 61-kDa Cpn60 protein in Anabaena (2, 20). Both the Hsp60 chaperonins are strongly expressed during heat stress, resulting in the superior thermotolerance of Anabaena, compared to the transient expression of the Hsp60 chaperonins in Escherichia coli (20). GroEL and Cpn60 stably associate with thylakoid membranes in Anabaena strain PCC7120 (14) and in Synechocystis sp. strain PCC6803 (15). In Synechocystis sp. strain PCC6803, photosynthetic inhibitors downregulate, while light and redox perturbation induce cpn60 expression (10, 25, 31), and a cpn60 mutant exhibits a light-sensitive phenotype (http://genome.kazusa.or.jp/cyanobase), indicating a possible role for Cpn60 in photosynthesis. GroEL, a lipochaperonin (12, 28), requires a cochaperonin, GroES, for its folding activity and has wider substrate selectivity. In heterotrophic nitrogen-fixing bacteria, such as Klebsiella pneumoniae and Bradyrhizobium japonicum, the GroEL protein has been implicated in nif gene expression and the assembly, stability, and activity of the nitrogenase proteins (8, 9, 11).Earlier work from our laboratory demonstrated that the Hsp60 family chaperonins are commonly induced general-stress proteins in response to heat, salinity, and osmotic stresses in Anabaena strains (2, 4). Our recent work elucidated a major role of the cpn60 gene in the protection from photosynthesis and the nitrate reductase activity of N-supplemented Anabaena cultures (21). In this study, we integrated and constitutively overexpressed an extra copy of the groESL operon in Anabaena to evaluate the importance and contribution of GroEL chaperonin to the physiology of Anabaena during optimal and stressful conditions.Anabaena sp. strain PCC7120 was photoautotrophically grown in combined nitrogen-free (BG11) or 17 mM NaNO3-supplemented (BG11+) BG11 medium (5) at pH 7.2 under continuous illumination (30 μE m−2 s−1) and aeration (2 liters min−1) at 25°C ± 2°C. Escherichia coli DH5α cultures were grown in Luria-Bertani medium at 37°C at 150 rpm. For E. coli DH5α, kanamycin and carbenicillin were used at final concentrations of 50 μg ml−1 and 100 μg ml−1, respectively. Recombinant Anabaena clones were selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin or in BG11 liquid medium containing 12.5 μg ml−1 neomycin. The growth of cyanobacterial cultures was estimated either by measuring the chlorophyll a content as described previously (18) or the turbidity (optical density at 750 nm). Photosynthesis was measured as light-dependent oxygen evolution at 25 ± 2°C by a Clark electrode (Oxy-lab 2/2; Hansatech Instruments, England) as described previously (21). Nitrogenase activity was estimated by acetylene reduction assays, as described previously (3). Protein denaturation and aggregation were measured in clarified cell extracts containing ∼500 μg cytosolic proteins treated with 100 μM 8-anilino-1-naphthalene sulfonate (ANS). The pellet (protein aggregate) was solubilized in 20 mM Tris-6 M urea-2% sodium dodecyl sulfate (SDS)-40 mM dithiothreitol for 10 min at 50°C. The noncovalently trapped ANS was estimated using a fluorescence spectrometer (model FP-6500; Jasco, Japan) at a λexcitation of 380 nm and a λemission of 485 nm, as described previously (29).The complete bicistronic groESL operon (2.040 kb) (GenBank accession no. FJ608815) was PCR amplified from PCC7120 genomic DNA using specific primers (Table (Table1)1) and the amplicon cloned into the NdeI-BamHI restriction sites of plasmid vector pFPN, which allows integration at a defined innocuous site in the PCC7120 genome and expression from a strong cyanobacterial PpsbA1 promoter (6). The resulting construct, designated pFPNgro (Table (Table1),1), was electroporated into PCC7120 using an exponential-decay wave form electroporator (200 J capacitive energy at a full charging voltage of 2 kV; Pune Polytronics, Pune, India), as described previously (6). The electroporation was carried out at 6 kV cm−1 for 5 ms, employing an external autoclavable electrode with a 2-mm gap. The electroporation buffer contained high concentrations of salt (10 mM HEPES, 100 mM LiCl, 50 mM CaCl2), as have been recommended for plant cells (23) and other cell types (27). The electrotransformants, selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin by repeated subculturing for at least 25 weeks to achieve complete segregation, were designated AnFPNgro.

TABLE 1.

Plasmids, strains, and primers used in this study
Plasmid, strain, or primerFeature or sequenceaSource or reference
Plasmids
    pFPNIntegrative expression vector6
    pFPNgropFPN with groESL operonThis study
Strains
    An7120Wild-type Anabaena sp. strain PCC7120R. Haselkorn
    AnFPNgroGroESL-overexpressing AnabaenaThis study
Primers
    groESLfwd5′-GGA ATT CCA TAT GGC AGC AGT ATC TCT AAG-3′This study
    groESLrev5′-CGC GGA TCC TTA GTA ATC GAA GTC ACC GCC-3′This study
    PpsbA1fwd5′-GAG CTG CAG GGA TTC CCA AAG ATA GGG-3′6
    PpsbA1rev5′-CTC GGA TCC CCA TAT GTT TTT ATG ATT GCT TTG-3′6
Open in a separate windowaThe underlined nucleotides in the primer sequences represent the incorporated restriction endonuclease sites.The transfer of pFPNgro to PCC7120 resulted in the integration of an extra copy of groESL (PpsbA1-groESL) into the PCC7120 genome. PCR amplification (Fig. (Fig.1I)1I) with the PpsbA1 forward and groESL reverse primer pairs showed the additional copy of groEL juxtaposed downstream to the PpsbA1 promoter (lane 6) in the recombinant Anabaena strain, while the native groESL operon found in the wild-type strain (lane 3) remained intact in the AnFPNgro strain (lane 5).Open in a separate windowFIG. 1.Integration and constitutive expression of an additional groESL operon in Anabaena strain PCC7120. (I) Integration of an additional groESL operon in the PCC7120 genome. The electrophoretogram shows the transfer and integration of PpsbA1-groESL in strain AnFPNgro. Lane 1, 1-kb DNA marker; lane 2, PCR control template without primer; lane 3, PCR product from wild-type Anabaena using the groESLfwd and groESLrev primers; lane 4, PCR product from PCC7120 using the PpsbA1fwd and groESLrev primers; lane 5, PCR product from AnFPNgro using the groESLfwd and groESLrev primers; lane 6, PCR product from AnFPNgro using the PpsbA1fwd and groESLrev primers. (II) Expression of the groESL operon in the wild-type and recombinant Anabaena strains during stress. PCC7120 (An7120) and AnFPNgro were grown for 3 days and then subjected to either heat stress (42°C) for 4 h (A and A′) or salinity stress (150 mM NaCl) for 3 days (B and B′). GroEL levels were estimated by Western blotting of 10% SDS-polyacrylamide gel electrophoresis-resolved whole-cell proteins, followed by immunodetection using anti-AnGroEL antiserum and densitometry (A and B). Panels A′ and B′ depict SDS-polyacrylamide gel electrophoresis-resolved and Coomassie blue-stained proteins to show equal sample loading. Various lanes contained protein samples under unstressed-control (U), heat (H), or salt (S) stress conditions. Numbers below panels A and B show GroEL quantitation by densitometry.Under normal growth conditions, the recombinant AnFPNgro cells expressed about 8.7- to 9.9-fold higher levels of GroEL protein than that detected in the PCC7120 cells (Fig. 1II), indicating a strong constitutive expression of the GroEL protein from the PpsbA1 promoter. In PCC7120, the wild-type copy of the GroEL protein was induced by both heat shock (Fig. 1IIA, lane 2) and salt stress (Fig. 1IIB, lane 2). GroEL levels in the recombinant strain were found to be about 2.5-fold higher under heat stress (Fig. 1IIA, lane 4) and approximately 1.7-fold higher under salinity stress (Fig. 1IIB, lane 4) than that expressed by PCC7120 under these stresses (Fig. 1IIA and IIB, lanes 2). The exposure of AnFPNgro cells to heat stress resulted in a further increase of approximately sixfold in GroEL levels (Fig. 1IIA, lane 4), while salt stress enhanced GroEL levels by approximately threefold (Fig. 1IIB, lane 4), compared to the constitutively expressed GroEL level in this strain (Fig. 1IIA and IIB, lanes 3). The constitutive expression of GroEL protein in AnFPNgro under ambient conditions (Fig. 1IIA and IIB, lanes 3) was from the PpsbA1 promoter (Fig. (Fig.1I,1I, lane 6). We assume that the additional increase in GroEL levels observed under heat and salt stress (Fig. 1IIA and IIB, lanes 4) was due to the native stress-induced groESL operon, functional from its own promoter.The diazotrophically grown PCC7120 did not grow during prolonged exposure to heat stress (42°C) (Fig. (Fig.2A)2A) and showed poor growth during salinity stress (150 mM) (Fig. (Fig.2B).2B). Salinity stress was particularly severe for photosynthetic pigments in PCC7120 and bleached the cells (data not shown). In contrast, the recombinant strain AnFPNgro showed a higher content of major photosynthetic pigments (Fig. (Fig.2C)2C) and presented a healthier blue-green phenotype (data not included). Strain AnFPNgro also showed better growth than wild-type PCC7120, both under unstressed and stressed conditions (Fig. 2A and B).Open in a separate windowFIG. 2.Effect of groESL overexpression on thermotolerance and salinity tolerance of diazotrophically grown Anabaena strains. (A) Growth (measured as chlorophyll a content) of strains during prolonged exposure to 42°C. (B) Growth (turbidity measured at an optical density at 750 nm) during prolonged exposure to 150 mM NaCl. (C) Absorption spectra of a dilute suspension of whole filaments after 7 days of exposure to various NaCl concentrations.The photosynthetic activity decreased with time during heat stress in PCC7120 but was maintained at comparatively higher levels in AnFPNgro cells (Fig. (Fig.3A)3A) than in PCC7120. The dinitrogenase activity in PCC7120 was severely inhibited after 4 h of heat stress (Fig. (Fig.3B).3B). In contrast, the dinitrogenase activity of the recombinant strain (AnFPNgro) was about 1.5-fold higher than PCC7120 under ambient conditions (25°C ± 2°C, no NaCl) and more than 3-fold higher than that of PCC7120 after 4 h of heat stress (Fig. (Fig.3B).3B). Prolonged exposure to salinity stress inhibited photosynthesis and nitrogen fixation in PCC7120 (Fig. 3C and D). However, strain AnFPNgro displayed significant protection of these activities, possibly due to overexpressed GroES/GroEL proteins. The recombinant strain (AnFPNgro) exhibited much-reduced protein aggregation after 4 h of heat stress or after prolonged exposure (10 days) to salinity stress than PCC7120 (Fig. (Fig.44).Open in a separate windowFIG. 3.Effect of groESL overexpression on photosynthesis and nitrogen fixation in Anabaena. Photosynthesis (A and C) and nitrogenase activity (B and D) in wild-type Anabaena strain PCC7120 (An7120) and recombinant AnFPNgro strains exposed to heat stress for 10 days (A) or 4 h (B) or to salinity stress (150 mM) for 10 days (C and D). Letters U, H, and S denote unstressed-control, heat stress, and salt stress conditions, respectively.Open in a separate windowFIG. 4.Protein aggregation in Anabaena strains during exposure to heat and salinity stress. The protein aggregation was monitored by ANS fluorescence after 4 h of exposure to 42°C (H) or 10 days of exposure to 150 mM NaCl (S) and compared with the unstressed controls (U) of recombinant strain AnFPNgro and the wild-type Anabaena strain PCC7120 (An7120). The fluorescence intensity output from the spectrofluorimeter is expressed as arbitrary units (a.u.).This study evaluated the possible benefits of groESL overexpression for the general stress tolerance of PCC7120. The recombinant AnFPNgro strain harbored two groESL operons, one native stress-inducible groESL and a second groESL operon integrated at a defined innocuous site and placed downstream of a constitutive PpsbA1 promoter (Fig. (Fig.1).1). The recombinant AnFPNgro strain showed an 8- to 10-fold higher constitutive expression of GroEL under ambient conditions than PCC7120, while its inherent stress-induced GroEL expression was not impaired and resulted in 30- and 48-fold more GroEL under salt and heat stress, respectively (Fig. (Fig.11).The AnFPNgro cells exhibited better growth (Fig. (Fig.2),2), photosynthesis, and nitrogen fixation (Fig. (Fig.3)3) than PCC7120, suggesting a possible limitation on the availability of GroEL under ambient conditions. The protection of photosynthetic pigments and oxygen photoevolution during salinity stress were particularly impressive. Nearly 2- to 2.5-fold higher GroEL levels in AnFPNgro under heat or salt stress, compared to those of PCC7120 (Fig. (Fig.1),1), lowered the stress-triggered protein aggregation (Fig. (Fig.4)4) and had beneficial consequences for photosynthesis and nitrogen fixation in the recombinant strain (Fig. (Fig.3).3). An overall improvement in the aforesaid vital metabolic activities eventually resulted in the superior tolerance of recombinant AnFPNgro to heat and salt stresses.  相似文献   

7.
Exposure time and magnetic-pole-dependent physiological response of a cyanobacterium, Anabaena doliolumwere studied by exposing the samples to two poles [north (N) and south (S)] of a 0.3 Tesla permanent magnet for 1–6 h. Study revealed that both magnetic poles, N and S, produce different effects, depending on the length of exposure. However, physiological response of the cyanobacterium to N + S mixtures was significantly different from the response to either of the poles, N or S, suggesting a change in structural chemistry of the water or nutrient solution responsible for the magnetobiological effects.  相似文献   

8.
An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5′-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.  相似文献   

9.
Hydrogen production rates by Anabaena sp. strain TU37-1 obtained after an initial 1-day incubation period were approximately 70 to 80 and 3 to 9 µmol (mg chl)–1 h–1 under argon and nitrogen atmospheres, respectively. Hydrogen production under argon was not enhanced by addition of carbon dioxide, but was enhanced to some extent under nitrogen by increasing the initial carbon dioxide concentration. Rates of hydrogen and oxygen production during the initial 7-hour period were 15 and 220 µmol (mg chl)–1 h–1, respectively, in vessels with 18.5% initial carbon dioxide. Hydrogen production under nitrogen was enhanced by addition of carbon monoxide (1%). The rate obtained from the initial 1-day incubation period was about 40 µmol (mg chl)–1 h–1, which corresponded to about 60% of that under argon. On the basis of these observations, a possible strategy for hydrogen production by nitrogen-fixing cyanobacteria under nitrogen in the presence of carbon monoxide is indicated.  相似文献   

10.

Background

An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.

Methodology/Principal Findings

To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (∼600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.

Conclusions/Significance

This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.  相似文献   

11.
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35°C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 μM·min−1, respectively. The apparent Km and kcat/Km values for Reactive Blue 5 were 3.6 μM and 1.2 × 107 M−1 s−1, respectively, while the apparent Km and kcat/Km values for H2O2 were 5.8 μM and 6.6 × 106 M−1 s−1, respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to ∼50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.In textile, food, and dyestuff industries, reactive dyes such as azo and anthraquinone (AQ) and pthalocyanine-based dyes constitute one of the extensively used classes of synthetic dyes. However, it has been estimated that approximately 50% of the applied reactive dye is wasted because of hydrolysis during the dyeing process (26, 35). This results in a great effluent problem for the industries because of the recalcitrant nature of these dyes. With increased public concern and ecological awareness, in addition to stricter legislative control of wastewater discharge in recent years, there is an increased interest in various methods of dye decolorization. Dye decolorization using physicochemical processes such as coagulation, adsorption, and oxidation with ozone has proved to be effective. However, these processes are usually expensive, generate large volumes of sludge, and require the addition of environmentally hazardous chemical additives (26). There are several reports of microorganisms capable of decolorizing synthetic dyes. This has been attributed to their growth and production of enzymes such as laccase (1, 9, 40), azoreductases (3), and peroxidases, for example, lignin peroxidase (12, 25, 36), manganese peroxidase (10, 38), and versatile peroxidase (16). However, most of the synthetic dyes are xenobiotic compounds that are poorly degraded using the typical biological aerobic treatments. Furthermore, microbial anaerobic reductions of synthetic dyes are known to generate compounds such as aromatic amines that are generally more toxic than the dyes themselves (3). Therefore, for environmental safety, the use of enzymes instead of enzyme-producing microorganisms presents several advantages such as increased enzyme production, enhanced stability and/or activity, and lower costs by using recombinant DNA technology.Peroxidases are heme-containing enzymes that use hydrogen peroxide (H2O2) as the electron acceptor to catalyze numerous oxidative reactions. They are found widely in nature, both in prokaryotes and eukaryotes, and are largely grouped into plant and animal superfamilies. They are one of the most studied enzymes because of their inherent spectroscopic properties and potential use in both diagnostic and bioindustrial applications. In particular, their ability to degrade a wide range of substrates has recently stimulated interest in their potential application in environmental bioremediation of recalcitrant and xenobiotic wastes (10, 25, 26).Recently, a novel family of heme peroxidases characterized by broad dye decolorization activity has been identified in various fungal species such as Thanatephorus cucumeris Dec1 (18), Termitomyces albuminosus (15), Polyporaceae sp. (15), Pleurotus ostreatus (13), and Marasmius scorodonius (27). Because of their broad substrate specificity, low pH optima, lack of a conserved active site distal histidine, and structural divergence from classical plant and animal peroxidases (32), these proteins have been proposed to belong to the novel DyP peroxidase family. Over 400 proteins of prokaryotic and eukaryotic origins have been grouped in the DyP peroxidase family, Pfam 04261 (http://pfam.sanger.ac.uk/), and it is apparent from genome databases that many species possess DyP. The ability of these proteins to effectively degrade hydroxyl-free AQ and azo dyes as well as the specificity for typical peroxidase substrates illustrates their potential use in the bioremediation of wastewater contaminated with synthetic dyes. However, with the exception of a DyP from the plant pathogenic fungus T. cucumeris Dec1 (an anamorph of Rhizoctonia solani, a very common fungal plant pathogen), which has been characterized extensively (18, 28, 30-32, 34), little information is available on other members of the DyP family. In particular, studies on bacterial DyPs have been limited to only the automatically translated sequence or structural data (41, 42). Within the context of further understanding the structure-function and potential applicability of these novel types of enzymes in general, we have taken an interest in DyP-type enzymes, particularly, the less known bacterial groups.Cyanobacteria (blue-green algae) represent the most primitive, oxygenic, plant-type photosynthetic organisms and are thought to be involved in greater than 20 to 30% of the global photosynthetic primary production of biomass, accompanied by the cycling of oxygen. Anabaena sp. strain PCC 7120 is a filamentous, heterocyst-forming cyanobacterium capable of nitrogen fixation and has long been used as a model organism to study the prokaryotic genetics and physiology of cellular differentiation, pattern formation, and nitrogen fixation (14). This strain''s genome sequence is complete and annotated (17). From bioinformatics analysis of the Anabaena sp. strain PCC 7120 genome, we identified an open reading frame (ORF), alr1585, encoding a putative heme-dependent peroxidase exhibiting homology to T. cucumeris Dec1, DyP. Here, we report on the characterization of this novel bacterial DyP, designated AnaPX (for Anabaena peroxidase), from the cyanobacterium Anabaena sp. strain PCC 7120, with broad specificity for both aromatic compounds and synthetic dyes such as AQ dyes.  相似文献   

12.
Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N2 as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production, photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact that the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O2 evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O2 on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7.  相似文献   

13.
A transformant of Anabaena 7120 was made by introducing a plasmidthat includes an adenylate cyclase gene of Anabaena cylindrica.Expression of this gene was driven by the bacterial tac promoter.Transformants accumulate cAMP 170 fold higher than the concentrationin the parental strain. The transformation resulted in the fragmentationof filaments in both nitrogen-replete and nitrogen-free media.It was suggested that this fragmentation caused the inhibitionof growth under nitrogen-fixing conditions. (Received December 26, 1997; Accepted April 30, 1998)  相似文献   

14.
应用反义技术对鱼腥藻7120切的内源glnA基因的表达进行调控,首次获得了人工反义系统的蓝藻品系。先从编码谷酰胺合成酶(GS)的基因glnA中取得部分结构基因片段,与表达质粒载体pRL-439及穿梭质粒载体pDC-8相连接。通过酶切鉴定筛选出反向克隆的穿梭表达质粒pDC-AM,然后应用三亲接合转移法把它转入鱼腥藻对7120.通过新霉素筛选,酶谱鉴定,斑点杂交,质粒的交叉转化以及内源glnA基因表达的GS活性分析,GS相关的胞外泌氨分析及所获藻株的形态学变化,证明已在鱼腥藻7120中建立了人工反义glnA基因的品系。  相似文献   

15.
Thylakoid membrane preparations obtained from mechanically disrupted (sonicated) cells of the cyanobacterium Anabaena sp. strain 7119 show a membrane-bound ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) as determined either by specific antibodies or by using the ferredoxin-dependent NADPH-cytochrome c reductase activity, which is a specific test for this enzyme. However, in contrast with higher plant thylakoids, a low yield of the cyanobacterial reductase—only about 20% of the total amount of this protein estimated in whole cell homogenates—was obtained as a membrane-bound form when Mg2+ was present during the disruption treatment. It is noteworthy that the addition of water-soluble nonionic polymers, namely polyethylene glycol and polyyinylpyrrolidone, dramatically increased the yield of the thylakoid-bound reductase, reaching values up to 80 to 85% of the total enzyme. Using these thylakoid membrane preparations, a quantitative determination of the reductase has been performed for the first time for cyanobacterial thylakoids. The value determined by immunoelectrophoresis—from 8 to 10 nanomoles per micromole of chlorophyll—is clearly higher than those reported for chloroplast thylakoids.  相似文献   

16.
cyaB1 gene encodes a novel type of adenylate cyclase. The catalytic domain is located in the carboxyl-terminal half, while the GAF and PAS domains are conserved in the amino-terminal half. Recombinant CyaB1 and a truncated CyaB1 lacking the amino-terminal domain (ΔN–CyaB1) were purified and characterized. The purified CyaB1 is activated by divalent cations, such as Mg2+ and Mn2+, like other types of adenylate cyclase. The activity of CyaB1 was slightly elevated by forskolin, but was not affected by cGMP, irrespective of the presence of the cGMP binding motif in the GAF domain. The specific activity of ΔN–CyaB1 is one-eighteenth that of CyaB1, whereas the Km values of both proteins are almost the same. The results suggest that the amino-terminal half has a positive regulatory effect on the catalytic activity. Received 27 April 2001/ Accepted in revised form 6 July 2001  相似文献   

17.
具异型胞蓝细菌 Anabaena sp.PCC 7120质膜和类囊体膜的分离纯化 李斌 徐冬一 赵进东*  相似文献   

18.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

19.
Nitrate assimilation-defective mutants SP7, SP9, and SP17 of the cyanobacterium Anabaena sp. PCC 7120 were isolated by use of transposon mutagenesis and screened on medium containing chlorate. SP7 and SP17 represented nitrate reductase-defective nature, while mutant SP9 appeared to be a regulatory mutant exhibiting pleiotropic behavior. Kinetics of nitrate uptake system exhibited K s values of 31–38 μM for parent, SP7, and SP17 strains; however, mutant SP9 exhibited a high K s value of 109.5 μM. Defective nitrate reductase was apparent in mutant SP7 and SP9, while mutant SP17 exhibited partial defective nature. Methyl viologen-dependent NR activity in parent strain presented a biphasic nature with K m values of 0.13 and 2.47 mM, whereas a single K m value (2.96 mM) was observed for mutant SP17. Mutant SP9 was also defective in nitrite uptake and reduction. Mutant strains exhibited derepressed nitrogenase activity in the presence of nitrate, while glutamine synthetase activity remained unaltered. Received: 20 April 1999 / Accepted: 22 May 1999  相似文献   

20.
I. Laczkó  K. Barabás 《Planta》1981,153(4):312-316
We have studied the evolution of hydrogen by photobleached filaments of the heterocystous bluegreen alga Anabaena cylindrica. The photobleached cells became orange-yellow due to the heavy accumulation of carotenoids. We found that the yellow filaments produced much larger amounts of hydrogen than the normal, green ones, while the nitrogenase activity responsible for hydrogen evolution increased to a lesser extent. We suggest that a reversible hydrogenase activity induced in photobleached filaments is responsible for the excess amount of hydrogen. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibits the hydrogen evolution of the yellow filaments which produce much more oxygen and fix less CO2 than the green filaments. Therefore we consider the water to be a possible electron source for this hydrogenase. The low efficiency of light energy conversion (0.3%) in nitrogenase-catalyzed H2 evolution (Laczkó, 1980 Z. Pflanzenphysiol. 100, 241–245) is increased to 1.5–2% by the appearance of the reversible hydrogenase activity.Abbreviations Chl chlorophyll - Car carotenoids - Phy phycocyanin - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - PSI photosystem I - PSII photosystem II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号