首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to determine the effect of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) on prostaglandin (PG)F(2 alpha) and PGE(2) secretion as well as cyclooxygenase-2 (COX-2) protein expression in chorioamnion collected on days 25, 30 and 40 of pregnancy in pigs. Fetal membrane slices were incubated for 16 h with TNF-alpha, IL-1 beta, IL-6 (1 or 10 ng/ml of medium) or two combinations of the three cytokines (1 or 10 ng/ml of each cytokine per combination). We demonstrated the stimulatory effect of TNF-alpha, IL-1 beta and/or IL-6 on PGF(2 alpha) and PGE(2) secretion by the porcine fetal membranes. The medium content of these PGs depended on the cytokine type, treatment dose and day of pregnancy. Cytokine stimulation of PGE(2) was more pronounced than that of PGF(2 alpha). In addition, an increase in PGF(2 alpha) and/or PGE(2) secretion was usually associated with an augmentation of COX-2 protein expression. Our results support the notion concerning the possible role of cytokines in modulating production of PGs by fetal membranes during the first trimester of gestation.  相似文献   

2.
Ovarian steroids modulate uterine receptivity in domestic species. Luteinizing hormone (LH) stimulates prostaglandin (PG)F(2alpha) release from the porcine endometrium. However, the combined action of LH and steroids on PGs secretion has not yet been studied in pigs. The aim of the present study was to examine the effect of estradiol (E(2)) and progesterone (P(4)) on basal and LH-stimulated PGF(2alpha) and PGE(2) secretion and cyclooxygenase-2 (COX-2) protein expression in porcine endometrial stromal cells obtained on days 12-13 of the estrous cycle. Cells were cultured for 48 h in a medium containing charcoal-stripped newborn calf serum alone or supplemented with 10 nM E(2) and/or 50 nM P(4). Then, the cells were incubated for 6 h in the presence or absence of LH (20 ng/ml). Long exposure of stromal cells to steroids had no effect on PGF(2alpha) secretion, but PGE(2) release increased in the presence of E(2) plus P(4) (p<0.05). Pre-incubation of cells with E(2) plus P(4) resulted in enhanced PGF(2alpha) (p<0.05) and PGE(2) (p<0.001) secretion. Moreover, LH increased PG(2alpha) secretion in control (p<0.05) and E(2)-treated stromal cells (p<0.01). LH tended (p=0.07) to elevate PGE(2) release only in cells pre-exposed to E(2) plus P(4). The expression of COX-2 protein was increased by LH (p<0.05), but not by steroids. These results confirm the stimulatory effect of LH on PGF(2alpha) secretion and COX-2 expression in porcine stromal cells before luteolysis. PG release from porcine endometrium seems to be controlled by ovarian steroids, however only E(2)-treated-treated cells responded to LH.  相似文献   

3.
We investigated the effects that the combination of IL-1 alpha and transforming growth factor-beta (TGF-beta) had on PGE2 production in a murine clonal osteoblastic cell line MC3T3-E1 and primary rat calvarial osteoblast-like cells. In serum-supplemented medium, IL-1 alpha was a potent stimulator of PGE2 production in MC3T3-E1 cells (50-fold increase with 0.1 ng/ml). TGF-beta (10 ng/ml) had only a small effect alone and no additional effect on IL-1 alpha-induced responses. In serum-deprived MC3T3-E1 cells, PGE2 responses to IL-1 alpha were either absent or markedly reduced. TGF-beta alone had small effects. However, simultaneous addition of TGF-beta with IL-1 alpha to MC3T3-E1 cells partially restored the ability of IL-1 alpha to generate a PGE2 response (10-fold increase in PGE2 with 0.1 ng/ml of both IL-1 alpha and TGF-beta). As with MC3T3-E1 cells, serum-deprived primary fetal rat calvarial osteoblastic cells also did not respond to IL-1 alpha, unless TGF-beta was present in the medium (sixfold increase in PGE2 with 0.1 ng/ml IL-1 alpha and 10 ng/ml TGF-beta). The synergistic effect of TGF-beta and IL-1 alpha was specific for PGE2 responses, because these factors did not synergistically affect cell proliferation, collagen and noncollagen protein synthesis, or alkaline phosphatase activity. The observed synergy was not associated with changes in the steady state cyclooxygenase (PGH synthase) mRNA levels. However, it did correlate with increased release of [3H]arachidonic acid from prelabeled serum-depleted MC3T3-E1 cells. Hence, the synergistic interactions of IL-1 alpha and TGF-beta on PGE2 appear to occur through an increase in the release of arachidonic acid substrate from phospholipid pools. These effects may be important for both normal bone turnover and the responses of bone to inflammatory and immune stimuli.  相似文献   

4.
Tumor necrosis factor-alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F2alpha synthesis in bovine endometrial stromal cells. The aims of the present study were to determine the effect of interferon-tau (IFNtau) on TNFalpha-stimulated PGF2alpha synthesis and the intracellular mechanisms of TNFalpha and IFNtau action in the stromal cells. When cultured bovine stromal cells were exposed to TNFalpha (0.006-0.6 nM) for 24 h, the production of PGF2alpha and cyclooxygenase (COX)-2 gene expression were stimulated by TNFalpha (0.06-0.6 nM, P < 0.05). Moreover, a specific COX-2 inhibitor (NS-398; 5 nM) blocked the stimulatory effect of TNFalpha on PGF2alpha production (P < 0.05). Although IFNtau (0.03-30 ng/ml) did not stimulate basal PGF2alpha production in the stromal cells, it suppressed TNFalpha action in PGF2alpha production dose dependently (P < 0.05). Moreover, the stimulatory effect of TNFalpha (0.6 nM) on COX-2 gene expression was completely blocked by IFNtau (30 ng/ml; P < 0.05), although the gene expression of COX-2 was not influenced by IFNtau. The overall results indicate that the stimulatory effect of TNFalpha on PGF2alpha production is mediated by the up-regulation of COX-2 gene expression and suggest that one of the mechanisms of the inhibitory effect of IFNtau on luteolysis is the inhibition of TNFalpha action in PGF2alpha production in the stromal cells by the down-regulation of COX-2 gene expression stimulated by TNFalpha.  相似文献   

5.
Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1beta (IL-1beta 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1alpha, PGE2, PGF2alpha and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 microM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1beta treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 microM for 24h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 microM for 24h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL-1beta. This inhibition was reversed by coincubation with forskolin (100 microM). The increased COX activity in HUVEC treated with IL-1beta was also inhibited by PGE2 (0.03, 0.3 and 3 microM for 24h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 microM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1beta treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1beta in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1beta treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.  相似文献   

6.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

7.
8.
The expression of X-linked inhibitor of apoptosis protein (XIAP), a member of a family of intracellular antiapoptotic proteins, is induced by FSH during follicular development in vivo. Whether the XIAP up-regulation by FSH (100 ng/ml) is a direct action of the gonadotropin and is important in the control of granulosa cell proliferation during follicular growth is unclear. The overall objective of the present study was to examine whether the FSH-induced XIAP expression and granulosa cell proliferation during follicular development is mediated by the secretion and action of intraovarian transforming growth factor alpha (TGFalpha). In rat follicles cultured for 2 and 4 days, FSH stimulated estradiol production, TGFalpha secretion, XIAP expression, and follicular growth. The theca cells are the primary follicular source of FSH-induced TGFalpha, as indicated by in situ hybridization. Intrafollicular injection of a neutralizing anti-TGFalpha antibody (50-200 ng/ml; immunoglobulin G as control) or addition of estradiol-antagonist ICI 182780 (0.5-100 nM) to the culture media suppressed FSH-induced XIAP expression and follicular growth. The effect of ICI 182780 could be partially reversed by high concentrations of estrogen (250 and 500 nM). Whereas TGFalpha (10-20 ng/ml) significantly increased granulosa cell XIAP content and proliferation in primary granulosa cell cultures, FSH alone was ineffective in eliciting the mitogenic response. Our results support the hypothesis that FSH stimulates granulosa cell proliferation via theca TGFalpha secretion and action in response to increased granulosa cell estradiol synthesis, and that XIAP up-regulation in response to FSH suppresses granulosa cell apoptosis and facilitates FSH-induced follicular growth.  相似文献   

9.
10.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

11.
Renal mesangial cell apoptosis is a crucial repair mechanism in glomerular nephritis (GN). These cells express receptors to tumor necrosis factor alpha (TNFalpha), a cytokine with proapoptotic properties implicated in the resolution of GN. Progression to proliferative GN is accompanied by cyclooxygenase-mediated formation of prostaglandins and inefficient apoptosis of mesangial cells. The aims of this study were to quantify TNFalpha-mediated apoptosis in renal mesangial cells and to determine whether expression of the inducible form of cyclooxygenase, cylooxygenase-2 (COX-2), inhibits this apoptosis. By 24 h significant levels of apoptosis were induced by TNFalpha (100 ng/ml) or etoposide control (100 microm), as shown by phosphatidylserine externalization, caspase-3 activation, development of a sub-G(0)/G(1) region, and distinct chromatin condensation. Using adenoviral-mediated delivery of the COX-2 gene (AdCOX-2) apoptotic features were prevented from appearing in AdCOX-2 cells treated with TNFalpha, whereas etoposide-treated AdCOX-2 cells were not protected. Furthermore, COX-2 expression, induced by the vasoconstrictor peptide ET-1 or the cytokine interleukin-1beta also inhibited TNFalpha-mediated but not etoposide-mediated apoptosis, to an extent, similar to adenoviral COX-2 infection. Selective COX-2 inhibition by NS-398 restored TNFalpha-mediated apoptosis. Prostaglandin (PG) E(2) and PGI(2) were shown to be the major prostaglandin metabolites in AdCOX-2 cells. The addition of PGE(2) and PGI(2) protected against TNFalpha-mediated apoptosis. These results demonstrate COX-2 anti-apoptotic activity via a death receptor route and suggest that selective COX-2 inhibition may augment TNFalpha apoptosis in chronic inflammatory conditions.  相似文献   

12.
13.
VEGF is a highly specific stimulator of endothelial cells and may play an important role in angiogenesis in the process of tissue regeneration. We previously showed that cyclooxygenase-2 (COX-2) expressed in mesenchymal cells of the ulcer bed is involved in the ulcer repair process. To clarify the role of COX-2 in angiogenesis during gastric ulcer healing, we investigated the relation between COX-2 expression and VEGF production in human gastric fibroblasts in vivo and in vitro. Gastric fibroblasts were cultured in RPMI 1640 with and without IL-1alpha or IL-1beta in the presence or absence of NS-398, a selective COX-2 inhibitor. Supernatant VEGF and PGE(2) concentrations were measured by enzyme-linked immunosorbent assay. COX-2 expression in fibroblasts was determined by Western blot analysis. VEGF and COX-2 expression in surgical resections of human gastric ulcer tissue was examined immunohistochemically. IL-1 dose dependently enhanced VEGF release in cultured gastric fibroblasts after a 24-h stimulation. IL-1 also stimulated PGE(2) production in gastric fibroblasts via COX-2 induction. NS-398 significantly suppressed VEGF and PGE(2) release from IL-1-stimulated gastric fibroblasts; concurrent addition of PGE(2) restored NS-398-inhibited VEGF release. COX-2 and VEGF immunoreactivity were colocalized in fibroblast-like cells in the ulcer bed of gastric tissues. These results suggest that COX-2 plays a key role in VEGF production in gastric fibroblasts stimulated by IL-1 in vitro and that angiogenesis induced by the COX-2-VEGF pathway might be involved in gastric ulcer healing.  相似文献   

14.
PGE(2), synthesized by cyclooxygenase-2 (COX-2)-overexpressing tumor, is known to contribute to cellular immune suppression in cancer patients, but the mechanism remains unclear. We report the mechanism of a CD4(+) T regulatory type 1 (Tr1) induction by CD11c(+) mature dendritic cells (DCs) that phagocytose allogeneic and autologous COX-2-overexpressing glioma. A human glioma cell line, U-87MG, and primary cultured glioblastoma cells (MG-377) overexpressed COX-2. We did not detect IL-10Ralpha expression in these gliomas, and rIL-10 did not suppress their COX-2 expression. Exposure to COX-2-overexpressing glioma induced mature DCs to overexpress IL-10 and decreased IL-12p70 production. These DCs induced a Tr1 response, which is characterized by robust secretion of IL-10 and TGF-beta with negligible IL-4 secretion by CD4(+) T cells, and an inhibitory effect on admixed lymphocytes. Peripheral CD4(+) T cell populations isolated from an MG-377 patient also predominantly demonstrated a Tr1 response against MG-377 cells. Selective COX-2 inhibition in COX-2-overexpressing gliomas at the time of phagocytic uptake by DCs abrogated this regulatory response and instead elicited Th1 activity. COX-2 stable transfectants in LN-18 (LN-18-COX2) also induced a Tr1 response. The effect of a COX-2 inhibition in LN-18-COX2 is reversible after administration of PGE(2). Taken together, robust levels of PGE(2) from COX-2-overexpressing glioma, which is unresponsive to IL-10 within the local microenvironment, may cause DCs to secrete high levels of IL-10. These results indicate that COX-2-overexpressing tumors induce a Tr1 response, which is mediated by tumor-exposed, IL-10-enhanced DCs.  相似文献   

15.
16.
Interleukin-1beta (IL-1beta) induces the release of nitric oxide (.NO) and prostaglandin E2 (PGE2) by chondrocytes and this effect can be reversed with the application of dynamic compression. Previous studies have indicated that integrins may play a role. In addition, IL-1beta upregulates the expression of iNOS and COX-2 mRNA via upstream activation of p38 MAPK. The current study examines the involvement of these pathways in mediating .NO and PGE2 release in IL-1beta stimulated bovine chondrocytes subjected to dynamic compression. Bovine chondrocytes were seeded in agarose constructs and cultured with 0 or 10 ng.ml(-1) IL-1beta with or without the application of 15% dynamic compressive strain at 1 Hz. Selected inhibitors were used to interrogate the role of alpha5beta1 integrin signalling and p38 MAPK activation in mediating the release of .NO and PGE2 in response to both IL-1beta and dynamic compression. The relative expression levels of iNOS and COX-2 were assessed using real-time quantitative PCR. Nitrite, a stable end product of .NO, was measured using the Griess assay and PGE2 release was measured using an enzyme immunoassay. IL-1beta enhanced .NO and PGE2 release and this effect was reversed by the application of dynamic compression. Co-incubation with an integrin binding peptide (GRGDSP) abolished the compression-induced effect. Real-time quantitative PCR analysis revealed that IL-1beta enhanced iNOS and COX-2 mRNA levels, with the maximum expression at 6 or 12 hours. Dynamic compression reduced this effect via a p38 MAPK sensitive pathway. These results suggest that dynamic compression acts to abrogate of .NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2.  相似文献   

17.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

18.
Interleukin-1 (IL-1) is a polypeptide that has both local and systemic effects on numerous tissues, including endocrine cells. To evaluate the effect of IL-1 on luteal function, bovine luteal cells were cultured for 5 days with increasing concentrations (0.1, 0.5, 1.0, 2.5, 5.0, 10.0 ng/ml) of recombinant bovine interleukin-1 beta (rbIL-1 beta). IL-1 beta increased the production of luteal 6-keto-prostaglandin-F1 alpha (6-keto-PGF1 alpha), prostaglandin E2 (PGE2), and prostaglandin F2 alpha (PGF2 alpha) in a dose-dependent manner, but had no effect on progesterone (P4) production. Treatment with the cyclooxygenase inhibitor, indomethacin (5 micrograms/ml), inhibited basal, as well as rbIL-1 beta-stimulated prostaglandin production. Addition of Iloprost (a synthetic analogue of prostacyclin, 5 ng/ml) suppressed basal production of PGF2 alpha and PGE2, but did not reduce the stimulatory effect of rbIL-1 beta. Similarly, PGF2 alpha suppressed basal, but not IL-1 beta-stimulated, production of 6-keto-PGF1 alpha. PGE2 had no effect on the synthesis of either PGF2 alpha or 6-keto-PGF1 alpha. P4 (1.75 micrograms/ml) reduced basal as well as rbIL-1 beta-stimulated production of 6-keto-PGF1 alpha, PGE2, and PGF2 alpha. These results indicate that IL-1 beta could serve as an endogenous regulator of luteal prostaglandin production. It appears that IL-1 beta action is not modified by exogenous prostaglandins, but is at least partially regulated by elevated P4. It is possible that the role of IL-1 beta in stimulation of luteal prostaglandin production may be confined to a period characterized by low P4 levels, such as during luteal development or regression.  相似文献   

19.
Kombé A  Sirois J  Goff AK 《Steroids》2003,68(7-8):651-658
Estradiol (E2), progesterone (P4), and oxytocin (OT) are important for the initiation of luteolysis in ruminants but the mechanisms involved are still poorly understood. The objective of this study was to determine if duration of exposure of bovine endometrial epithelial cells to P4 affected the response of the cells to E2. Endometrial epithelial cells, from cows at Days 1-3 of the estrous cycle, were cultured for 10, 17, and 21 days in the presence or absence of P4 (100 ng ml(-1)). After culture, each group of cells was incubated for a further 6, 12, 24 or 48 h with or without E2 (100 pg ml(-1)) and then incubated for 6 h with different doses of OT (2, 20, and 200 ng ml(-1)). E2 enhanced OT-stimulated PGF2 alpha secretion in cells cultured with P4 for 17 or 21 days, with a maximum effect after 24-h exposure, but not in cells cultured with P4 for 10 days. To determine the mechanism of action of E2, COX-1 and COX-2 were measured by Western blotting and OTR number was measured by saturation analysis. OT increased COX-2 (P<0.05), but there was no significant effect of E2 on the expression of either COX-1 or COX-2. E2 did, however, increase (P<0.001) the OTR number in cells cultured with P4 for 21 days, whereas it inhibited OTR in cells cultured for 10 days. These data show that E2 can stimulate PGF2 alpha secretion by increasing OTR expression in bovine endometrial cells in vitro, but only after exposure to P4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号