首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.  相似文献   

3.
We previously reported that exposure to extremely low-frequency electromagnetic fields (ELFEFs) increases the expression and function of voltage-gated Ca2+)channels and that Ca2+ influx through Ca(v)1 channels plays a key role in promoting the neuronal differentiation of neural stem/progenitor cells (NSCs). The present study was conducted to determine whether ELFEFs influence the neuronal differentiation of NSCs isolated from the brain cortices of newborn mice by modulating Ca(v)1-channel function. In cultures of differentiating NSCs exposed to ELFEFs (1 mT, 50 Hz), the percentage of cells displaying immunoreactivity for neuronal markers (beta-III-tubulin, MAP2) and for Ca(v)1.2 and Ca(v)1.3 channels was markedly increased. NSC-differentiated neurons in ELFEF-exposed cultures also exhibited significant increases in spontaneous firing, in the percentage of cells exhibiting Ca2+ transients in response to KCl stimulation, in the amplitude of these transients and of Ca2+ currents generated by the activation of Ca(v)1 channels. When the Ca(v)1-channel blocker nifedipine (5 microM) was added to the culture medium, the neuronal yield of NSC differentiation dropped significantly, and ELFEF exposure no longer produced significant increases in beta-III-tubulin- and MAP2-immunoreactivity rates. In contrast, the effects of ELFEFs were preserved when NSCs were cultured in the presence of either glutamate receptor antagonists or Ca(v)2.1- and Ca(v)2.2-channel blockers. ELFEF stimulation during the first 24 h of differentiation caused Ca(v)1-dependent increases in the number of cells displaying CREB phosphorylation. Our data suggest that ELFEF exposure promotes neuronal differentiation of NSCs by upregulating Ca(v)1-channel expression and function.  相似文献   

4.
A perturbed maternal metabolic environment such as chronically elevated circulating free fatty acids have been shown to affect stem cell fate during embryonic neurogenesis. However, molecular mechanisms behind this are not well defined, especially in human. Here in using directed differentiation of human embryonic stem cells (hESCs) into cortical neurons as model, we show that chronically elevated saturated fatty acid (palmitate) results in decreased proliferation of neural stem cells and increased differentiation into neurons. This phenotype could be due to palmitate mediated increased expression of key genes needed for neuronal differentiation such as EOMES, TBR1, NEUROD1 and RELN and reduced expression of SREBP regulated lipogenic genes at early stages of cortical differentiation. Furthermore, palmitate treatment increased histone acetylation globally and at select gene promoters among affected genes. We also found differential expression of several lncRNAs associated with cellular stress and metabolic diseases in the presence of palmitate including BDNF-AS suggesting the contribution of additional epigenetic regulatory mechanisms. Together, our results show that saturated fatty acid affects developmental neurogenesis through modulation of gene expression and through epigenetic regulatory mechanisms.  相似文献   

5.
Hu M  Sun YJ  Zhou QG  Chen L  Hu Y  Luo CX  Wu JY  Xu JS  Li LX  Zhu DY 《Journal of neurochemistry》2008,106(4):1900-1913
Several lines of evidence suggest involvement of NMDA receptors (NMDARs) in the regulation of neurogenesis in adults and the formation of spatial memory. Functional properties of NMDARs are strongly influenced by the type of NR2 subunits incorporated. In adult forebrain regions such as the hippocampus and cortex, only NR2A and NR2B subunits are available to form the receptor complex with NR1 subunit. NR2B is predominant NR2 subunit in any of rat or human neural stem cells (NSCs). Thus, we suppose that NR2B-containing NMDAR should be critical in regulating adult neurogenesis, and thereby playing a role in the formation of spatial memory. In the cultured NSCs derived from the embryonic brain of rats, NR2B subunit-specific NMDAR antagonist Ro25-6981 increased cell proliferation, whereas MK-801, non-selective open-channel blocker of NMDARs, inhibited cell proliferation. Blockade of NR2B-containing NMDAR stimulated neurogenesis in the adult hippocampus and facilitated the formation of spatial memory. The enhanced spatial memory dropped back to base level when the NR2B antagonist-induced neurogenesis was neutralized by 3'-azido-deoxythymidine, a telomerase inhibitor. In addition, blockade of NR2B inhibited neuronal nitric oxide synthase (nNOS) enzymatic activity. In null mutant mice lacking nNOS gene (nNOS−/−), the effects of NR2B antagonist on neurogenesis disappeared. Moreover, nitric oxide donor DETA/NONOate attenuated and nNOS inhibitor 7-nitroindazole enhanced the effect of Ro 25-6981 on NSCs proliferation. Our findings suggest that NR2B-containing NMDAR subtypes negatively regulate neurogenesis in the adult hippocampus by activating nNOS activity and thereby hinder the formation of spatial memory.  相似文献   

6.

Background

Maternal diabetes alters gene expression leading to neural tube defects (NTDs) in the developing brain. The mechanistic pathways that deregulate the gene expression remain unknown. It is hypothesized that exposure of neural stem cells (NSCs) to high glucose/hyperglycemia results in activation of epigenetic mechanisms which alter gene expression and cell fate during brain development.

Methods and Findings

NSCs were isolated from normal pregnancy and streptozotocin induced-diabetic pregnancy and cultured in physiological glucose. In order to examine hyperglycemia induced epigenetic changes in NSCs, chromatin reorganization, global histone status at lysine 9 residue of histone H3 (acetylation and trimethylation) and global DNA methylation were examined and found to be altered by hyperglycemia. In NSCs, hyperglycemia increased the expression of Dcx (Doublecortin) and Pafah1b1 (Platelet activating factor acetyl hydrolase, isoform 1b, subunit 1) proteins concomitant with decreased expression of four microRNAs (mmu-miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466 d-3p) predicted to target these genes. Knockdown of specific microRNAs in NSCs resulted in increased expression of Dcx and Pafah1b1 proteins confirming target prediction and altered NSC fate by increasing the expression of neuronal and glial lineage markers.

Conclusion/Interpretation

This study revealed that hyperglycemia alters the epigenetic mechanisms in NSCs, resulting in altered expression of some development control genes which may form the basis for the NTDs. Since epigenetic changes are reversible, they may be valuable therapeutic targets in order to improve fetal outcomes in diabetic pregnancy.  相似文献   

7.
Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.  相似文献   

8.
Early life stress (ELS) programs the developing organism and influences the development of brain and behavior. We tested the hypothesis that ELS‐induced histone acetylations might alter the expression of synaptic plasticity genes that are critically involved in the establishment of limbic brain circuits. Maternal separation (MS) from postnatal day 14–16 was applied as ELS and two immediate early genes underlying experience‐induced synaptic plasticity, Arc and early growth response 1 (Egr1) were analyzed. We show here that repeated ELS induces a rapid increase of Arc and Egr1 in the mouse hippocampus. Furthermore, immunoblotting revealed that these changes are paralleled by histone modifications, reflected by increased acetylation levels of H3 and H4. Most importantly, using native Chromatin immunoprecipitation quantitative PCR (nChIP‐qPCR), we show for the first time a correlation between elevated histone acetylation and increased Arc and Egr1 expression in response to ELS. These rapid epigenetic changes are paralleled by increases of dendritic complexity and spine number of hippocampal CA3 pyramidal neurons in ELS animals at weaning age. Our results are in line with our working hypothesis that ELS induces activation of synaptic plasticity genes, mediated by epigenetic mechanisms. These events are assumed to represent early steps in the adaption of neuronal networks to a stressful environment.  相似文献   

9.
10.
Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.  相似文献   

11.
Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency.  相似文献   

12.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

13.
14.

Background

The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.

Methodology/Principal Findings

Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.

Conclusions/Significance

These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.  相似文献   

15.
A promising strategy for treating Alzheimer’s disease (AD) is hippocampal neurogenesis enhancement. Tenuigenin (TEN) is a bioactive compound extracted from Polygala tenuifolia that is widely used for treating amnesia in Chinese medicine. However, whether TEN is effective in treating AD through hippocampal neurogenesis is not fully clear. This study aimed to explore the pharmacologic effect and underlying mechanism of TEN on hippocampal neurogenesis and cognitive deficit amelioration in AD. In an in vivo study, TEN administration significantly ameliorated the cognitive decline in APP/PS1 transgenic AD mice via enhancement of hippocampal neurogenesis, which might be attributed to activation of the GSK-3β/β-catenin pathway. Furthermore, an in silico study suggested that TEN might be directly targeted to GSK-3β. Overall, TEN enhanced hippocampal neurogenesis and consequently ameliorated cognitive deficits via GSK-3β/β-catenin pathway activation, indicating that TEN might be a promising novel agent for AD treatment.  相似文献   

16.
17.
Previously, we reported the cognitive enhancing effects of oroxylin A in unimpaired mice and its memory ameliorating activity in various memory impaired mice. To elucidate the mechanism mediating the cognitive effects of oroxylin A, this study examined the consequences of oroxylin A administration on neurogenesis in the hippocampal dentate gyrus using immunostaining for 5-bromo-2-deoxyuridine (BrdU) incorporation. In addition, we determined whether the new cells adopted a neuronal or glial fate by examining the co-localization of BrdU staining with neuronal or glial markers. Administration of oroxylin A in a dose-dependent and time-dependent manner increased the number of BrdU-incorporating cells. Moreover, the percentage of BrdU-incorporating cells co-localized with neuronal markers, neuronal nuclei, was significantly increased by the oroxylin A administration. These results suggest that the increased neurogenesis induced by the administration of oroxylin A could be, at least in part, associated with its positive effects on cognitive processing.  相似文献   

18.
The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in female AD-like mice reduced cognitive decline only when delivered during the symptomatic phase. With these data in hand, we wondered whether the consequences of vitamin D administration on hippocampal neurogenesis are stage-dependent. Male wild-type and transgenic AD-like mice (5XFAD model) were fed with a diet containing either no vitamin D (0VD) or a normal dose of vitamin D (NVD) or a high dose of vitamin D (HVD), from month 1 to month 6 (preventive arm) or from month 4 to month 9 (curative arm). Working memory was assessed using the Y-maze, while amyloid burden, astrocytosis, and neurogenesis were quantified using immunohistochemistry. In parallel, the effects of vitamin D on proliferation and differentiation were assayed on primary cultures of murine neural progenitor cells. Improved working memory and neurogenesis were observed when high vitamin D supplementation was administered during the early phases of the disease, while a normal dose of vitamin D increased neurogenesis during the late phases. Conversely, an early hypovitaminosis D increased the number of amyloid plaques in AD mice while a late hypovitaminosis D impaired neurogenesis in AD and WT mice. The observed in vivo vitamin D-associated increased neurogenesis was partially substantiated by an augmented in vitro proliferation but not an increased differentiation of neural progenitors into neurons. Finally, a sexual dimorphism was observed. Vitamin D supplementation improved the working memory of males and females, when delivered during the pre-symptomatic and symptomatic phases, respectively. Our study establishes that (i) neurogenesis is improved by vitamin D in a male mouse model of AD, in a time-dependent manner, and (ii) cognition is enhanced in a gender-associated way. Additional pre-clinical studies are required to further understand the gender- and time-specific mechanisms of action of vitamin D in AD. This may lead to an adaptation of vitamin D supplementation in relation to patient’s gender and age as well as to the stage of the disease.  相似文献   

19.
Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long‐term memory. Earlier we demonstrated that scopolamine‐induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT 1) and histone deacetylase 2 (HDAC 2) in mice. DNMT 1 and HDAC 2 act together by recruiting a co‐repressor complex and deacetylating the chromatin. The catalytic activity of HDAC s is mainly dependent on its incorporation into multiprotein co‐repressor complexes, among which SIN 3A‐HDAC 2 co‐repressor is widely studied to regulate synaptic plasticity. However, the involvement of co‐repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co‐repressor SIN 3A in scopolamine‐induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN 3A expression in mice. To prevent such increase in SIN 3A expression, we used hippocampal infusion of SIN 3A‐siRNA and assessed the effect of SIN 3A silencing on scopolamine‐induced amnesia. Silencing of SIN 3A in amnesic mice reduced the binding of HDAC 2 at neuronal immediate early genes (IEG s) promoter, but did not change the expression of HDAC 2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEG s (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine‐induced down‐regulation of IEG s and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN 3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies.

  相似文献   

20.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1-/-) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1-/- and wild type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1-/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号