首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the short- and long-term effects of ceftriaxone on glutamate transporter subtype 1 (GLT-1) transporter activity and extracellular glutamate in the rat nucleus accumbens. Repeated ceftriaxone administration (50, 100 or 200 mg/kg, i.p.) produced a dose-dependent reduction in glutamate levels that persisted for 20 days following discontinuation of drug exposure. The ceftriaxone effect was prevented by the GLT-1 transporter inhibitor dihydrokainate (1 μM, intra-accumbal). These results suggest that β-lactam antibiotics produce an enduring reduction in glutamatergic transmission in the brain reward center.  相似文献   

2.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons. Although the etiology of the majority of human PD cases is unknown, experimental evidence points to oxidative stress as an early and causal event. Probucol is a lipid-lowering phenolic compound with anti-inflammatory and antioxidant properties that has been recently reported as protective in neurotoxicity and neurodegeneration models. This study was designed to investigate the effects of probucol on the vulnerability of striatal dopaminergic neurons to oxidative stress in a PD in vivo model. Swiss mice were treated with probucol during 21 days (11.8 mg/kg; oral route). Two weeks after the beginning of treatment, mice received a single intracerebroventricular (i.c.v.) infusion of 6-hydroxydopamine (6-OHDA). On the 21st day, locomotor performance, striatal oxidative stress-related parameters, and striatal tyrosine hydroxylase and synaptophysin levels, were measured as outcomes of toxicity. 6-OHDA-infused mice showed hyperlocomotion and a significant decrease in striatal tyrosine hydroxylase (TH) and synaptophysin levels. In addition, 6-OHDA-infused mice showed reduced superoxide dismutase activity and increased lipid peroxidation and catalase activity in the striatum. Notably, probucol protected against 6-OHDA-induced hyperlocomotion and striatal lipid peroxidation, catalase upregulation and decrease of TH levels. Overall, the present results show that probucol protects against 6-OHDA-induced toxicity in mice. These findings may render probucol as a promising molecule for further pharmacological studies on the search for disease-modifying treatment in PD.  相似文献   

3.
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson’s disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may modulate synaptic DA. Using the unilateral 6-OHDA rat PD model, we examined [3H]DA uptake dynamics in relation to striatal DAT and tyrosine hydroxylase (TH) protein loss compared with contralateral intact striatum. Despite >70% striatal DAT loss, DA uptake decreased only ∼25% and increased as DAT loss approached 99%. As other monoamine transporters can transport DA, we determined if norepinephrine (NE) and serotonin (5-HT) differentially modulated DA uptake in lesioned striatum. Unlabeled DA, NE, and 5-HT were used, at a concentration that differentially inhibited DA uptake in intact striatum, to compete against [3H]DA uptake. In 6-OHDA lesioned striatum, DA was less effective, whereas NE was more effective, at inhibiting [3H]DA uptake. Furthermore, norepinephrine transporter (NET) protein levels increased and desipramine was ∼two-fold more effective at inhibiting NE uptake. Serotonin inhibited [3H]DA uptake, but without significant difference between lesioned and contralateral striatum. L-DOPA inhibited [3H]DA uptake two-fold more in lesioned striatum and inhibited NE uptake ∼five-fold more than DA uptake in naïve striatum. Consequently, DA uptake may be mediated by NET when DAT loss is at PD levels. Increased inhibition of DA uptake by L-DOPA and its preferential inhibition of NE over DA uptake, indicates that NET-mediated DA uptake may be modulated by L-DOPA when DAT loss exceeds 70%. These results indicate a novel mechanism for DA uptake during PD progression and provide new insight into how L-DOPA affects DA uptake, revealing possible mechanisms of its therapeutic and side effect potential.  相似文献   

4.
Downregulation of astrocytic glutamate transporters is a feature of thiamine deficiency (TD), the underlying cause of Wernicke's encephalopathy, and plays a major role in its pathophysiology. Recent investigations suggest that ceftriaxone, a β-lactam antibiotic, stimulates GLT-1 expression and confers neuroprotection against ischemic and motor neuron degeneration. Thus, ceftriaxone treatment may be a protective strategy against excitotoxic conditions. In the present study, we examined the effects of ceftriaxone on the glutamate transporter splice-variant GLT-1b in rats with TD and in cultured astrocytes under TD conditions. Our results indicate that ceftriaxone protects against loss of GLT-1b levels in the inferior colliculus during TD, but with no significant effect in the thalamus and frontal cortex by immunoblotting and immunohistochemistry. Ceftriaxone also normalized the loss of GLT-1b in astrocyte cultures under conditions of TD. These results suggest that ceftriaxone has the ability to increase GLT-1b levels in astrocytes during TD, and may be an important pharmacological strategy for the treatment of excitotoxicity in this disorder.  相似文献   

5.
This study was performed to evaluate the bilateral effects of focal permanent ischemia (FPI) on glial metabolism in the cerebral cortex. Two and 9 days after FPI induction, we analyze [18F]FDG metabolism by micro-PET, astrocyte morphology and reactivity by immunohistochemistry, cytokines and trophic factors by ELISA, glutamate transporters by RT-PCR, monocarboxylate transporters (MCTs) by western blot, and substrate uptake and oxidation by ex vivo slices model. The FPI was induced surgically by thermocoagulation of the blood in the pial vessels of the motor and sensorimotor cortices in adult (90 days old) male Wistar rats. Neurochemical analyses were performed separately on both ipsilateral and contralateral cortical hemispheres. In both cortical hemispheres, we observed an increase in tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and glutamate transporter 1 (GLT-1) mRNA levels; lactate oxidation; and glutamate uptake and a decrease in brain-derived neurotrophic factor (BDNF) after 2 days of FPI. Nine days after FPI, we observed an increase in TNF-α levels and a decrease in BDNF, GLT-1, and glutamate aspartate transporter (GLAST) mRNA levels in both hemispheres. Additionally, most of the unilateral alterations were found only in the ipsilateral hemisphere and persisted until 9 days post-FPI. They include diminished in vivo glucose uptake and GLAST expression, followed by increased glial fibrillary acidic protein (GFAP) gray values, astrocyte reactivity, and glutamate oxidation. Astrocytes presented signs of long-lasting reactivity, showing a radial morphology. In the intact hemisphere, there was a decrease in MCT2 levels, which did not persist. Our study shows the bilateralism of glial modifications following FPI, highlighting the role of energy metabolism adaptations on brain recovery post-ischemia.  相似文献   

6.
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson’s disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF’s cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.  相似文献   

7.
8.
Development of effective therapeutic drugs for Parkinson's disease (PD) is of great importance. Aberrant microRNA (miRNA) expression has been identified in postmortem human PD brain samples, in vitro and in vivo PD models. However, the role of miR-342-3p in PD has been understudied. The study explores the effects of miR-342-3p on expression of glutamate (Glu) transporter, and dopaminergic neuron apoptosis and proliferation by targeting p21-activated kinase 1 (PAK1) through the Wnt signaling pathway in PD mice. After establishment of PD mouse models, gain- or loss-of-function assay was performed to explore the functional role of miR-342-3p in PD. Number of apoptotic neurons and Glu concentration was then determined. Subsequently, PC12 cells were treated with miR-342-3p mimic, miR-342-3p inhibitor, dickkopf-1 (DKK1), and miR-342-3p inhibitor + DKK1. The expression of miR-342-3p, PAK1, the Wnt signaling pathway-related and apoptosis-related genes, Glutamate transporter subtype 1 (GLT-1), l -glutamate/ l -aspartate transporter (GLAST), tyrosine hydroxylase (TH) was measured. Also, cell viability and apoptosis were evaluated. PD mice exhibited increased miR-342-3p, while decreased expression of PAK1, GLT-1, GLAST, TH, and the Wnt signaling pathway-related and antiapoptosis genes. miR-342-3p downregulation could promote expression of PAK1, the Wnt signaling pathway-related and antiapoptosis genes. GLT-1, GLAST, and TH as well as cell viability, but reduce cell apoptosis rate. The results indicated that suppression of miR-342-3p improves expression of Glu transporter and promotes dopaminergic neuron proliferation while suppressing apoptosis through the Wnt signaling pathway by targeting PAK1 in mice with PD.  相似文献   

9.
Excitotoxicity has been associated with the loss of medium spiny neurons (MSN) in Huntington’s disease (HD). We have previously observed that the content of the glial glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), diminishes in R6/2 mice at 14 weeks of age but not at 10 weeks, and that this change correlates with an increased vulnerability of striatal neurons to glutamate toxicity. We have also reported that inhibition of the glycolytic pathway decreases glutamate uptake and enhances glutamate neurotoxicity in the rat brain. We now show that at 10-weeks of age, glutamate excitotoxicity is precipitated in R6/2 mice, after the treatment with iodoacetate (IOA), an inhibitor of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IOA induces a larger inhibition of GAPDH in R6/2 mice, while it similarly reduces the levels of GLT-1 and GLAST in wild-type and transgenic animals. Results suggest that metabolic failure and altered glutamate uptake are involved in the vulnerability of striatal neurons to glutamate excitotoxicity in HD.  相似文献   

10.
The sodium-dependent glutamate transporter, glutamate transporter subtype 1 (GLT-1) is one of the main glutamate transporters in the brain. GLT-1 contains a COOH-terminal sequence similar to one in an isoform of Slo1 K(+) channel protein previously shown to bind MAGI-1 (membrane-associated guanylate kinase with inverted orientation protein-1). MAGI-1 is a scaffold protein which allows the formation of complexes between certain transmembrane proteins, actin-binding proteins, and other regulatory proteins. The glutathione S-transferase pull-down assay demonstrated that MAGI-1 was a binding partner of GLT-1. The interaction between MAGI-1 and GLT-1 was confirmed by co-immunoprecipitation. Immunofluorescence of MAGI-1 and GLT-1 demonstrated that the distribution of MAGI-1 and GLT-1 overlapped in astrocytes. Co-expression of MAGI-1 with GLT-1 in C6 Glioma cells resulted in a significant reduction in the surface expression of GLT-1, as assessed by cell-surface biotinylation. On the other hand, partial knockdown of endogenous MAGI-1 expression by small interfering RNA in differentiated cultured astrocytes increased glutamate uptake and the surface expression of endogenous GLT-1. Knockdown of MAGI-1 increased dihydrokainate-sensitive, Na(+) -dependent glutamate uptake, indicating that MAGI-1 regulates GLT-1 mediated glutamate uptake. These data suggest that MAGI-1 regulates surface expression of GLT-1 and the level of glutamate in the hippocampus.  相似文献   

11.
Our previous study has shown that cerebral ischemic preconditioning (CIP) can up-regulate the expression of glial glutamate transporter-1 (GLT-1) during the induction of brain ischemic tolerance in rats. The present study was undertaken to further explore the uptake activity of GLT-1 in the process by observing the changes in the concentration of extracellular glutamate with cerebral microdialysis and high-performance liquid chromatography. The results showed that a significant pulse of glutamate concentration reached the peak value of sevenfold of the basal level after lethal ischemic insult, which was associated with delayed neuronal death in the CA1 hippocampus. When the rats were pretreated 2 days before the lethal ischemic insult with CIP which protected the pyramidal neurons against delayed neuronal death, the peak value of glutamate concentration decreased to 3.9 fold of the basal level. Furthermore, pre-administration of dihydrokainate, an inhibitor of GLT-1, prevented the protective effect of CIP on ischemia-induced CA1 cell death. At the same time, compared with the CIP + Ischemia group, the peak value of glutamate concentration significantly increased and reached sixfold of the basal level. These results indicate that CIP induced brain ischemic tolerance via up-regulating GLT-1 uptake activity for glutamate and then decreasing the excitotoxicity of glutamate.  相似文献   

12.
Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus.  相似文献   

13.
14.
Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain.  相似文献   

15.
Sodium-dependent glutamate uptake is essential for limiting excitotoxicity, and dysregulation of this process has been implicated in a wide array of neurological disorders. The majority of forebrain glutamate uptake is mediated by the astroglial glutamate transporter, GLT-1. We and others have shown that this transporter undergoes endocytosis and degradation in response to activation of protein kinase C (PKC), however, the mechanisms involved remain unclear. In the current study, transfected C6 glioma cells or primary cortical cultures were used to show that PKC activation results in incorporation of ubiquitin into GLT-1 immunoprecipitates. Mutation of all 11 lysine residues in the amino and carboxyl-terminal domains to arginine (11R) abolished this signal. Selective mutation of the seven lysine residues in the carboxyl terminus (C7K–R) did not eliminate ubiquitination, but it completely blocked PKC-dependent internalization and degradation. Two families of variants of GLT-1 were prepared with various lysine residues mutated to arginine. Analyses of these constructs indicated that redundant lysine residues in the carboxyl terminus were sufficient for the appearance of ubiquitinated product and degradation of GLT-1. Together these data define a novel mechanism by which the predominant forebrain glutamate transporter can be rapidly targeted for degradation.  相似文献   

16.
Activation of metabotropic glutamate receptor 5 (mGluRs) in the subthalamic nucleus (STN) results in burst-firing activity of STN neurons, which is similar to that observed in Parkinson's disease (PD). We examined the effects of chronic and systemic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, in firing activity of STN neurons in partially lesioned rats by 6-hydroxydopamine (6-OHDA). In 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (4 microg) into the medial forebrain bundle produced a partial lesion causing 36% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc). The 6-OHDA lesion in vehicle-treated rats showed an increasing firing rate and a more irregular firing pattern of STN neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, 14 days) produced neuroprotecive effects on the TH-ir neurons and normalized the hyperactive firing activity of STN neurons in 6-OHDA partially lesioned rats. These data demonstrate that partial lesion of the nigrostriatal pathway increases firing activity of STN neurons in the rat, and chronic, systemic MPEP treatment has the neuroprotective effect and reverses the abnormal firing activity of STN neurons, suggesting that MPEP has an important implication for the treatment of PD.  相似文献   

17.
18.
Increased oxidative stress contributes to pathogenesis of Parkinson's disease (PD). 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the oxidation product most frequently measured as an indicator of oxidative DNA damage. Several studies have shown increased 8-OHdG in PD patients. There are few basic laboratory data examining 8-OHdG levels in animal models of PD. In this study, we utilized hemiparkinsonian model of rats induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). The urinary 8-OHdG level was measured in relation to behavioral and pathological deficits arising from 6-OHDA-induced neurotoxic effects on the nigrostriatal dopaminergic pathway. All rats were subjected to a series of behavioral tests for 42 days after 6-OHDA injection. We collected urine samples with subsequent measurement of 8-OHdG level using ELISA kits. For immunohistochemical evaluation, tyrosine hydroxylase (TH) staining was performed. Significant increments in urinary 8-OHdG level were observed continuously from day 7 until day 35 compared to control group, which showed a trend of elevation as early as day 3. Such elevated urinary 8-OHdG level significantly correlated with all of the behavioral deficits measured here, suggesting that urinary 8-OHdG level provides a good index of severity of parkinsonism. Urinary 8-OHdG level also had a significant positive correlation with the survival rate of dopaminergic fibers or neurons, advancing the concept that oxidative stress during the early phase of 6-OHDA neurotoxicity may correspond to disease progression closely approximating neuronal degeneration in the nigrostriatal dopaminergic system. The present results demonstrate that alterations in urinary 8-OHdG level closely approximate onset and disease progression in PD.  相似文献   

19.
Parkinson’s disease (PD) patients, in addition to motor dysfunction, also present alterations in pain sensation. The present study characterized the antinociceptive effects of diphenyl diselenide ((PhSe)2) in a model of nociception induced by unilateral, intrastriatal 6-hydroxydopamine (6-OHDA) injection in rats. Male adult Wistar rats received 20 μg/3 μl of 6-OHDA (in saline solution containing 0.02 % of ascorbic acid) or 3 μl of vehicle into the right striatum (1.0 mm anterior, 3.0 mm lateral, and 5.0 mm ventral—with respect to the bregma). Thirty days after injection, rats received (PhSe)2 intragastrically at a dose of 10 mg/kg 1 h before behavioral tests (von Frey hairs, hot plate, tail immersion, formalin, and open field). Our results demonstrated that 6-OHDA injection to rats augmented the response frequency of von Frey hairs (VHF) stimulation, besides reducing the thermal withdrawal latency in the hot plate test. Importantly, the (PhSe)2 treatment decreased the mechanical allodynia measured by the response frequency of VHF stimulation and diminished the thermal nociception in the hot plate test in 6-OHDA-injected rats. In conclusion, these results revealed that a single oral administration of (PhSe)2 1 h prior to the accomplishment of the behavioral tests was effective to attenuate the increased mechanical and thermal nociception caused by a single intrastriatal 6-OHDA injection to rats. Furthermore, other clarifying studies are warranted to improve the evidence bases for future clinical use of (PhSe)2 as a new alternative therapy for the treatment of painful symptoms associated to PD.  相似文献   

20.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号