首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an “azo reductase.” The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic “azo reductases,” which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

2.
The anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 was analyzed. Aerobic conversion of 2-naphthalenesulfonate (2NS) by cells of strain BN6 stimulated the subsequent anaerobic reduction of the sulfonated azo dye amaranth at least 10-fold. In contrast, in crude extracts, the azo reductase activity was not stimulated. A mutant of strain BN6 which was not able to metabolize 2NS showed increased amaranth reduction rates only when the cells were resuspended in the culture supernatant of 2NS-grown BN6 wild-type cells. The same increase could be observed with different bacterial strains. This suggested the presence of an extracellular factor which was formed during the degradation of 2NS by strain BN6. The addition of 1,2-dihydroxynaphthalene, the first intermediate of the degradation pathway of 2NS, or its decomposition products to cell suspensions of the mutant of strain BN6 (2NS-) increased the activity of amaranth reduction. The presence of bacterial cells was needed to maintain the reduction process. Thus, the decomposition products of 1,2-dihydroxynaphthalene are suggested to act as redox mediators which are able to anaerobically shuttle reduction equivalents from the cells to the extracellular azo dye.  相似文献   

3.
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases.  相似文献   

4.
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases.  相似文献   

5.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an "azo reductase." The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic "azo reductases," which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

6.
During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement. The resulting strain, strain AKE1, did not degrade 2NS to salicylate. After aerobic preincubation with 2NS, strain AKE1 exhibited much higher reduction capacities for azo dyes under anaerobic conditions than the wild-type strain exhibited. Several compounds were present in the culture supernatants which enhanced the ability of S. xenophaga BN6 to reduce azo dyes under anaerobic conditions. Two major redox mediators were purified from the culture supernatants, and they were identified by high-performance liquid chromatography-mass spectrometry and comparison with chemically synthesized standards as 4-amino-1,2-naphthoquinone and 4-ethanolamino-1,2-naphthoquinone.  相似文献   

7.
Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino- and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naphthalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunctional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the catalytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the 2′-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they show about 40–60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BN6 has also been used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6 was studied in continuous cultures and was described by mathematical models. Received 02 April 1999/ Accepted in revised form 09 July 1999  相似文献   

8.
During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement. The resulting strain, strain AKE1, did not degrade 2NS to salicylate. After aerobic preincubation with 2NS, strain AKE1 exhibited much higher reduction capacities for azo dyes under anaerobic conditions than the wild-type strain exhibited. Several compounds were present in the culture supernatants which enhanced the ability of S. xenophaga BN6 to reduce azo dyes under anaerobic conditions. Two major redox mediators were purified from the culture supernatants, and they were identified by high-performance liquid chromatography-mass spectrometry and comparison with chemically synthesized standards as 4-amino-1,2-naphthoquinone and 4-ethanolamino-1,2-naphthoquinone.  相似文献   

9.
The naphthalenesulfonate-oxidizing bacterium Sphingomonas sp. BN6 was immobilized in calcium alginate. These beads were incubated under aerobic conditions in a medium with the sulfonated azo dye, Mordant Yellow 3 (MY3), and glucose. The immobilized cells converted MY3, but only a marginal turnover of the dye was found under these conditions with freely suspended cells of Sphingomonas sp. BN6. Under anaerobic conditions, suspended cells of Sphingomonas sp. BN6 reductively cleaved the azo bond of MY3 to 6-aminonaphthalene-2-sulfonate (6A2NS) and 5-aminosalicylate. The turnover of MY3 by the immobilized cells under aerobic conditions resulted in the formation of more than equimolar amounts of 5-aminosalicylate, but almost no (6A2NS) was detected. Cells of Sphingomonas sp. BN6 aerobically oxidize 6A2NS to 5-aminosalicylate. It was therefore concluded that the cells in the anaerobic center of the alginate beads reduced MY3 to 6A2NS and 5-aminosalicylate and that 6A2NS was oxidized to 5-aminosalicylate by those cells that were immobilized in the outer aerobic zones of the alginate beads. The presence of oxygen gradients within the alginate beads was verified by using oxygen micro-electrodes. A coimmobilisate of Sphingomonas sp. BN6 with a 5-aminosalicylate degrading bacterium completely degraded MY3. The immobilized cells also converted the sulfonated azo dyes Amaranth and Acid Red␣1. Received: 6 May 1996 / Received revision: 6 August 1996 / Accepted: 12 August 1996  相似文献   

10.
Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.  相似文献   

11.
Shewanella decolorationis S12 is capable of high rates of azo dye decolorization and dissimilatory Fe(III) reduction. Under anaerobic conditions, when Fe(III) and azo dye were copresent in S12 cultures, dissimilatory Fe(III) reduction and azo dye biodecolorization occurred simultaneously. Furthermore, the dye decolorization was enhanced by the presence of Fe(III). When 1 mM Fe(III) was added, the methyl red decolorizing efficiency was 72.1% after cultivation for 3 h, whereas the decolorizing efficiency was only 60.5% in Fe(III)-free medium. The decolorizing efficiencies increased as the concentration of Fe(III) was increased from 0 to 6 mM. Enzyme activities, which mediate the dye decolorization and Fe(III) reduction, were not affected by preadaption of cells to Fe(III) and azo dye nor by the addition of chloramphenicol. Both the Fe(III) reductase and the azo reductase were membrane associated. The respiratory electron transport chain inhibitors metyrapone, dicumarol, and stigmatellin showed significantly different effects on Fe(III) reduction than on azo dye decolorization.  相似文献   

12.
偶氮染料的微生物脱色研究进展   总被引:5,自引:1,他引:4  
陈刚  陈亮  黄满红 《微生物学通报》2009,36(7):1046-1051
微生物法是染料废水治理的重要方法。本文综述了特异性酶作用下好氧细菌和真菌对偶氮染料的脱色以及厌氧条件下氧化还原介质作为电子穿梭体时偶氮染料的非特异性还原过程。指出厌氧偶氮还原是偶氮染料还原的主要形式, 电子供体不同脱色效率不同。对目前生物法去除偶氮染料存在的问题进行了分析, 提出了相应的对策措施。  相似文献   

13.
Bacterial Decolorization of Azo Dyes by Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
Summary The ability of Rhodopseudomonas palustris AS1.2352 possessing azoreductase activity to decolorize azo dyes was investigated. It was demonstrated that anaerobic conditions were necessary for bacterial decolorization, and the optimal pH and temperature were pH 8 and 30–35 °C, respectively. Decolorization of dyes with different molecular structures was performed to compare their degradability. The strain could decolorize azo dye up to 1250 mg l−1, and the correlation between the specific decolorization rate and dye concentration could be described by Michaelis–Menten kinetics. Long-term repeated operations showed that the strain was stable and efficient during five runs. Cell extracts from the strain demonstrated oxygen-insensitive azoreductase activity in vitro.  相似文献   

14.
Reduction of Polymeric Azo and Nitro Dyes by Intestinal Bacteria   总被引:9,自引:6,他引:3       下载免费PDF全文
The O2-sensitive reduction of high-molecular-weight aromatic azo and nitro dyes by intestinal bacteria appears to be mediated by low-molecular-weight electron carriers with Eo′ = −200 to −350 mV. This process may allow the design of polymeric azo prodrugs for specific release of certain aromatic amines in the colon.  相似文献   

15.
从浙江某污水处理厂的活性污泥中筛选出若干株在高pH条件下对偶氮染料酸性大红GR有脱色能力的菌株,经脱色验证得到一株具有高效脱色活性的菌株Z1,经鉴定为巴斯德葡萄球菌(Staphylococcus pasteuri),并对此菌株的脱色特性进行了初步研究。结果表明,在厌氧条件下,Z1在pH7~12,40h对50mg/L的酸性大红GR脱色率均可达90%以上。该菌株对染料有较强的耐受力,在酸性大红GR浓度为300mg/L时,48h的脱色率仍可达93%。此外,该菌株能够对多种偶氮染料脱色,具有较好的脱色广谱性,有望应用于处理工业废水中的偶氮染料。  相似文献   

16.
Enterococcus sp. strain C1 is a facultative anaerobe which was coisolated with Citrobacter sp. strain A1 from a sewage oxidation pond. Strain C1 could degrade azo dyes very efficiently via azo reduction and desulfonation in a microaerophilic environment. Here the draft genome sequence of Enterococcus sp. C1 is reported.  相似文献   

17.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

18.
Nitric oxide synthase (NOS) is composed of an oxygenase domain and a reductase domain. The reductase domain has NADPH, FAD, and FMN binding sites. Wild-type nNOS reduced the azo bond of methyl red with a turnover number of approximately 130 min(-1) in the presence of Ca(2+)/calmodulin (CaM) and NADPH under anaerobic conditions. Diphenyleneiodonium chloride (DPI), a flavin/NADPH binding inhibitor, completely inhibited azo reduction. The omission of Ca(2+)/CaM from the reaction system decreased the activity to 5%. The rate of the azo reduction with an FMN-deficient mutant was also 5% that of the wild type. NADPH oxidation rates for the wild-type and mutant enzymes were well coupled with azo reduction. Thus, we suggest that electrons delivered from the FMN of the nNOS enzyme reduce the azo bond of methyl red and that this reductase activity is controlled by Ca(2+)/CaM.  相似文献   

19.
Reduction and biodegradation mechanisms of naphthylaminesulfonic azo dye amaranth using a newly isolated Shewanella decolorationis strain S12 were investigated. Under anaerobic conditions, amaranth was reduced by strain S12, and a stoichiometric amount of two reduction products RP-1 and RP-2 were generated. UV/visible spectrophotometric and high performance liquid chromatography (HPLC) analysis indicated that RP-1 and RP-2 were 1-aminenaphthylene -4-sulfonic acid and 1-aminenaphthylene-2-hydroxy-3, 6-disulfonic acid. The result strongly supports a mechanism of azo dye reduction by the process via the reductive cleavage of the azo bond to form corresponding aromatic amines. The result of HPLC analyses revealed that these aromatic amines were not able to be mineralized by strain S12 under anaerobic conditions. But after re-aeration of the decolorized culture, RP-2 was mineralized completely by this microorganism, but the consumption of RP-1 was not observed. Ames test showed that amaranth had mutagenic but no cytotoxic potential. The mutagenic potential was relieved after the anaerobic treatment with strain S12 as the mutagenic effect of the two reduction products from amaranth was not detected by Ames test. Thus, the ability of strain S12 to reduce and partially mineralize the naphthylaminesulfonic azo dye efficiently was demonstrated, which can potentially be used to biodegrade and detoxify wastewater containing azo dyes using an alternating anaerobic/aerobic treatment procedure.  相似文献   

20.
耐盐偶氮染料脱色菌株GYW的筛选及特性   总被引:4,自引:0,他引:4  
从某印染厂排水沟的底泥中分离筛选到1株对偶氮染料具有脱色能力的耐盐菌株GYW, 经16S rDNA序列分析, 鉴定为盐单胞菌属(Halomonas)中度耐盐菌。实验结果表明, 菌株GYW可以耐受10%以上的高盐度, 对酸性大红GR和其它偶氮染料具有广谱的脱色能力, 处于对数生长期的细胞脱色能力最强。对酸性大红GR的最佳脱色条件为:温度30°C, pH 7.5, LB培养基。氯离子对酸性大红GR脱色的抑制作用较强, 硫酸盐对脱色影响不大, 添加甜菜碱可提高染料的脱色速率, 最佳添加量为200 mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号