首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strategy based on isotope labeling of peptides and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry (LC-MALDI MS) has been employed to accurately quantify and confidently identify differentially expressed proteins between an E-cadherin-deficient human carcinoma cell line (SCC9) and its transfectants expressing E-cadherin (SCC9-E). Proteins extracted from each cell line were tryptically digested and the resultant peptides were labeled individually with either d(0)- or d(2)-formaldehyde. The labeled peptides were combined and the peptide mixture was separated and fractionated by a strong cation exchange (SCX) column. Peptides from each SCX fraction were further separated by a microbore reversed-phase (RP) LC column. The effluents were then directly spotted onto a MALDI target using a heated droplet LC-MALDI interface. After mixing with a MALDI matrix, individual sample spots were analyzed by MALDI quadrupole time-of-flight MS, using an initial MS scan to quantify the dimethyl labeled peptide pairs. MS/MS analysis was then carried out on the peptide pairs having relative peak intensity changes of greater than 2-fold. The MS/MS spectra were subjected to database searching for protein identification. The search results were further confirmed by comparing the MS/MS spectra of the peptide pairs. Using this strategy, we detected and compared relative peak intensity changes of 5480 peptide pairs. Among them, 320 peptide pairs showed changes of greater than 2-fold. MS/MS analysis of these changing pairs led to the identification of 49 differentially expressed proteins between the parental SCC9 cells and SCC9-E transfectants. These proteins were determined to be involved in different pathways regulating cytoskeletal organization, cell adhesion, epithelial polarity, and cell proliferation. The changes in protein expression were consistent with increased cell-cell and cell-matrix adhesion and decreased proliferation in SCC9-E cells, in line with E-cadherin tumor suppressor activity. Finally, the accuracy of the MS quantification and subcellular localization for 6 differentially expressed proteins were validated by immunoblotting and immunofluorescence assays.  相似文献   

2.
Agarose based immobilized copper (II) affinity chromatography (Cu(II)-IMAC) in tandem with reversed-phase chromatography was applied to a yeast protein extract. Histidine-rich peptides were selected and, in the process, samples were substantially simplified prior to mass spectral analysis. Samples of proteins from the yeast extract at fermentation time periods of 2.5 and 10 h were compared quantitatively used the GIST protocol. Acylation of the N-terminus of tryptic peptides with N-acetoxysuccinamide was used to globally label and quantify relative protein concentration changes. Together with N-terminal acylation, an imidazole elution procedure allowed histidine-rich peptides to be preferentially selected by Cu(II)-IMAC. An inverse labeling strategy was applied to increase reliability in determinations of up- and down-regulation. It was found that the concentration of some histidine-rich proteins changed in excess of 4-fold during fermentation. These proteins covered a wide range of molecular weight and pI values.  相似文献   

3.
The use and applicability of silica based capillary monolithic reversed-phase columns in proteomic analysis has been evaluated by liquid chromatography-mass spectrometry (LC-MS). Chromatographic performance of the monolithic capillaries was evaluated with a tryptic digest of cytochrome C showing very good resolution and reproducibility in addition to the known advantages of a low pressure drop over a time period of 6 months. Monoliths were subsequently tested for their suitability to separate proteins and peptides from samples typically encountered in proteomic research such as in-gel digested tryptic peptide mixtures or fractions of proteolytically digested human serum. The monolithic capillaries also proved useful in the analysis of phospholipid species in bronchoalveolar lavage fluid. Compared to particle-filled conventional capillary columns, rapid and highly efficient separation of peptides and proteins was achieved using these bimodal pore size distribution columns, and good quality collision induced dissociation (CID) mass spectra were obtained on an ion trap mass spectrometer. These novel monolithic separation media are thus a promising addition to the methodological toolbox of proteomics research.  相似文献   

4.
Detergents have been widely used for the solubilization of membrane proteins and the improvement of their digestion. In this paper, we have evaluated the application of sodium deoxycholate (SDC) to the solubilization and digestion of rat hippocampal plasma membrane (PM) proteins. For in-solution digestion, rat hippocampal PM fraction from sucrose-density gradient centrifugation was solubilized by boiling in 1.0% SDC, and directly digested without dilution. During the in-gel digestion of the hippocampal PM proteins separated by SDS-PAGE, 0.1% SDC was added. Before analysis of peptide mixture by liquid chromatography and electrospray mass spectrometry, SDC in the tryptic digests was removed by centrifugation following acidification. Use of 1.0% SDC in solubilization and in-solution digestion of rat PM proteins had led to 77 PM or membrane-associated proteins identified, a more than 2-fold increase over that by use of SDS. The addition of 0.1% SDC to the in-gel digestion of SDS-PAGE-resolved membrane proteins remarkably enhanced the coverage of tryptic peptides and the number of hydrophobic membrane proteins identified. Being a cheaper and more tractable acid-insoluble detergent, SDC could be used at higher concentration in the solubilization and tryptic digestion of proteins including PM proteins with the purpose of enhancing the protein solubility and at the same time making no interference with trypsin activity and subsequent analyses.  相似文献   

5.
Although differences in protein staining intensity can often be visualized by difference gel electrophoresis, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. We present a protocol for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using in-gel stable isotope labeling. In this protocol protein extracts from any source treated under two experimental conditions are resolved in two separate lanes by gel electrophoresis. Parallel gel regions of interest are reacted separately with either light or heavy isotope-labeled reagents, and the gel slices are then combined and digested with proteases. The resulting peptides are then analyzed by liquid chromatography/mass spectrometry (LC/MS) to determine relative abundance of light- and heavy-isotope lysine-containing peptide pairs and analyzed by LC/MS/MS for identification of sequence and modifications. This protocol should take approximately 24-26 h to complete, including the incubation time for proteolytic digestion. Additional time will be needed for data analysis and interpretation.  相似文献   

6.
Human colorectal carcinoma (Caco-2) cells undergo in culture spontaneous enterocytic differentiation, characterized by polarization and appearance of the functional apical brush border membrane. To provide insights into the biology of differentiation, we have performed a comparative proteomic analysis of the plasma membranes from proliferating cells (PCs) and the apical membranes from differentiated cells (DCs). Proteins were resolved by SDS-PAGE, in-gel digested and analyzed by RP-LC and MS/MS. Alternatively, proteins were digested in solution, and tryptic peptides were labeled with isotopic tags and analyzed by 2-D LC followed by MS/MS. Among the 1125 proteins identified in both proteomes, 76 were found to be significantly increased in the membranes of DCs and 61 were increased in PCs. Majority of the proteins increased in the apical membranes were metabolic enzymes, proteins involved in the maintenance of cellular structure, transmembrane transporters, and proteins regulating vesicular transport. In contrast, majority of the proteins increased in the membranes of PCs were involved in gene expression, protein synthesis, and folding. Both groups contained many novel proteins with yet to be identified functions, which could provide potential new markers of the intestinal cells or of colorectal cancer.  相似文献   

7.
This paper describes a heavy isotope coding strategy for the analysis of all types of tryptic peptides, including those that are N-terminally blocked and from the C-terminus of proteins. The method exploits differential derivatization of amine and carboxyl groups generated during proteolysis as a means of coding. Carboxyl groups produced during proteolysis incorporate 18O from H218O. Peptides from the C-terminus of proteins were not labeled with 18O unless they contained a basic C-terminal amino acid. Primary amines from control and experimental samples were differentially acylated after proteolysis with either 1H3- or 2H3-N-acetoxysuccinamide. When these two types of labeling were combined, unique coding patterns were achieved for peptides arising from the C-termini and blocked N-termini of proteins. This method was used to (1) distinguish C-terminal peptides in model proteins, (2) recognize N-terminal peptides from proteins in which the amino terminus is acylated, and (3) identify primary structure variations between proteins from different sources.  相似文献   

8.
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations.  相似文献   

9.
Here we report a novel approach in which gel-separated proteins are guanidinated in-gel prior to enzymatic cleavage. In contrast to previously described techniques, this procedure allows the extracted tryptic peptides to be N-terminal sulfonated without any further sample purification. The derivatized peptides were subsequently fragmented using a matrix-assisted laser desorption/ionization time of flight/time of flight instrument. The approach facilitates the de novo sequence analysis and allows obtaining longer stretches of amino acid sequence information. We demonstrate that the obtained information can be used to identify proteins using a sequence similarity search algorithm. The technique was compared to the standard peptide mass fingerprint approach, applied either in-gel or in solution, using a number of sodium dodecyl sulfate-polyacrylamide gel electrophoresis separated model proteins. Finally, the new protocol was applied on a proteomic study of two-dimensional PAGE separated proteins from Shewanella oneidensis. More than 50 proteins from this organism were identified using sub-picomol quantities of protein, and peptide sequences of up to 20 amino acid residues in length have been determined.  相似文献   

10.
We describe a protocol for quantitative labeling of tryptic peptides with oxygen-18. Proteins are first digested in natural water with trypsin, the pH is then lowered to 4.5 and the mixture is dried. Oxygen-18 water is added and two oxygen-18 atoms are incorporated at the peptides' carboxyl termini. Trypsin is finally inactivated by cysteine alkylation under denaturing conditions, which blocks oxygen back-exchange. The general value of this labeling strategy for differential proteomics is illustrated by the analysis and identification of several couples of differently labeled amino terminal peptides isolated from a human platelet proteome by a previously described chromatographic procedure.  相似文献   

11.
Tyrosine nitration is a well-established protein modification that occurs in disease states associated with oxidative stress and increased nitric oxide synthase activity. Nitration of specific tyrosine residues has been reported to affect protein structure and function, suggesting that 3-nitrotyrosine formation may not only be a disease marker but may also be involved in the pathogenesis of some diseases and in normal regulatory processes. It has been, however, difficult to identify sites of nitration. We describe a method that combines specific isolation of nitrated proteins with mass spectrometric determination of the amino acid sequence and the site of nitration of individual proteins. A complex protein mixture, e.g., serum or cell lysate, was enriched for nitrotyrosine-containing proteins by immunoprecipitation with antinitrotyrosine antibodies. The nitrotyrosines were then reduced to aminotyrosines with a strong reducing agent in parallel in-gel and in-solution procedures. Using nitrated human serum albumin as a model, we reduced the disulfide bonds with dithiothreitol and alkylated the free sulfhydryl groups with iodoacetamide. The nitrotyrosines were next reduced to aminotyrosines with sodium dithionite, and-at pH 5.0-cleavable biotin tags were selectively attached to the aminotyrosines and the albumin was then digested with trypsin. The biotinylated tryptic peptides were purified on a streptavidin affinity column and identified by mass spectrometry. We have also purified nitrated human serum albumin from an enriched sample of SJL mouse plasma and confirmed its identity by peptide mass fingerprinting and MASCOT.  相似文献   

12.

Background

Dysregulation of glycoproteins is closely related with many diseases. Quantitative proteomics methods are powerful tools for the detection of glycoprotein alterations. However, in almost all quantitative glycoproteomics studies, trypsin is used as the only protease to digest proteins. This conventional method is unable to quantify N-glycosites in very short or long tryptic peptides and so comprehensive glycoproteomics analysis cannot be achieved.

Methods

In this study, a comprehensive analysis of the difference of N-glycoproteome between hepatocellular carcinoma (HCC) and normal human liver tissues was performed by an integrated workflow combining the multiple protease digestion and solid phase based labeling. The quantified N-glycoproteins were analyzed by GoMiner to obtain a comparative view of cellular component, biological process and molecular function.

Results/conclusions

An integrated workflow was developed which enabled the processes of glycoprotein coupling, protease digestion and stable isotope labeling to be performed in one reaction vessel. This workflow was firstly evaluated by analyzing two aliquots of the same protein extract from normal human liver tissue. It was demonstrated that the multiple protease digestion improved the glycoproteome coverage and the quantification accuracy. This workflow was further applied to the differential analysis of N-glycoproteome of normal human liver tissue and that with hepatocellular carcinoma. A total of 2,329 N-glycosites on 1,052 N-glycoproteins were quantified. Among them, 858 N-glycosites were quantified from more than one digestion strategy with over 99% confidence and 1,104 N-glycosites were quantified from only one digestion strategy with over 95% confidence. By comparing the GoMiner results of the N-glycoproteins with and without significant changes, the percentage of membrane and secreted proteins and their featured biological processes were found to be significant different revealing that protein glycosylation may play the vital role in the development of HCC.  相似文献   

13.
In-gel digestion has been standardised using a poly(propylene) disposable. We designed a four-step rapid and simple in-gel digestion protocol which is carried out in one self-contained reaction tube avoiding keratin contamination. In order to quantify the efficiency of in-gel digestion, we developed a rapid on-column peptide acetylation protocol. Results show that trypsin in-gel uptake is increased and in-gel digestion is 90% complete within 15 min. We further show that spectrum quality, peptide yield and sequence coverage for mass spectrometric analysis are enhanced. We utilise 2-D PAGE separation of photosystem II from barley to demonstrate that the protocol facilitates identification of highly hydrophobic membrane proteins.  相似文献   

14.
As a potential tool for proteomics and protein characterization, in-gel cysteine- and arginine-specific cleavage is demonstrated by means of trypsin or endoproteinase Lys-C for six model proteins (lysozyme, alpha-lactalbumin, beta-lactoglobulin, ribonuclease A, albumin, and transferrin), ranging in size from 14 kDa to 79 kDa. Chemical modifications of cysteine (aminoethylation with bromoethylamine or N-(iodoethyl)-trifluoroacetamide, and subsequent guanidination) and lysine (acetylation) prior to tryptic digestion releases peptides delineated by cysteine or arginine residues. Peptide products are analyzed by MALDI-TOF-MS, ESI-MS, and ESI- and MALDI-MS/MS (with a quadrupole time-of-flight instrument). Complications induced by acrylamide alkylations of cysteines were avoided by substituting lower pH bis-tris polyacrylamide gels for tris-glycine. Sequence coverages from 35 to 86% were obtained and amino acid compositions of generated peptides could be confirmed by comprehensive y- and b-ion series. Detailed information about, in particular, cysteine rich proteins after gel electrophoresis were obtained. The chemistries for modification and cleavage specificities at cysteine residues provide an alternative means to characterize and identify proteins separated by gel electrophoresis.  相似文献   

15.
Inexpensive methods were developed for isolating and isotopically labeling tryptic peptides that contain either cysteine or methionine. After covalently capturing cysteine-containing peptides with pyridyl disulfide reactive groups on agarose beads, extensive wash steps were applied, and the attached peptides were released using a reducing agent. This approach results in less nonspecifically bound peptides and eliminates the possibility of generating avidin peptide background ions that can arise when using methods based on biotin and avidin (e.g. isotope-coded affinity tag). The thiols were alkylated using either N-ethyl- or N-D5-ethyl-iodoacetamide, both of which can be synthesized in a single step using inexpensive reagents. This isotopic labeling does not greatly increase the peptide mass, nor does it affect the peptide ion charge state in electrospray ionization. In addition, methionine-containing peptides were captured using commercially available methionine-reactive beads, and relative quantitation of peptides was achieved by isotopic labeling of amino groups using activated esters of either nicotinic acid or D4-nicotinic acid. These methods were used to study the metalloprotease-mediated shedding of cell surface proteins from a mouse monocyte cell line that had been treated with a phorbol ester and lipopolysaccharide. In addition to the identification of proteins previously determined to be inducibly shed, three new shed proteins were identified: CD18, ICOS ligand, and tumor endothelial marker 7-related protein.  相似文献   

16.
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.  相似文献   

17.
We have developed two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) and 18O proteolytic labeling strategies to identify and compare levels of secretory proteins with low abundance in the conditioned medium of rat adipose cells without or with insulin stimulation. Culture medium was concentrated and secreted proteins were separated on a RP-HPLC followed by LC-MS/MS analysis. For 18O proteolytic labeling, 16O- to 18O-exchange in the digested peptides from eight individual fractions was carried out in parallel in H2(16)O and H(2)18O with immobilized trypsin, and the ratios of isotopically distinct peptides were measured by mass spectrometry. A total of 84 proteins was identified as secreted adipokines. This large number of secretory proteins comprise multiple functional categories. Comparative proteomics of 18O proteolytic labeling allows the detection of different levels of many secreted proteins as exemplified here by the difference between basal and insulin treatment of adipose cells. Taken together, our proteomic approach is able to identify and quantify the comprehensive secretory proteome of adipose cells. Thus, our data support the endocrine role of adipose cells in pathophysiological states through the secretion of signaling molecules.  相似文献   

18.
Here we present a matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI–TOF/TOF)-based label-free relative protein quantification strategy that involves sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) separation of proteins followed by in-gel trypsin digestion. The main problem encountered in gel-based protein quantification is the difficulty in achieving complete and consistent proteolytic digestion. To solve this problem, we developed a high-pressure-assisted in-gel trypsin digestion method that is based on pressure cycling technology (PCT). The PCT approach performed at least as well as the conventional overnight in-gel trypsin digestion approach in parameters such as number of peaks detected, number of peptides identified, and sequence coverage, and the digestion time was reduced to 45 min. The gel/mass spectrometry (MS)-based label-free protein quantification method presented in this work proved the applicability of the signal response factor concept for relative protein quantification previously demonstrated by other groups using the liquid chromatography (LC)/MS platform. By normalizing the average signal intensities of the three most intense peptides of each protein with the average intensities of spiked synthetic catalase tryptic peptides, which we used as an internal standard, we observed spot-to-spot and lane-to-lane coefficients of variation of less than 10 and 20%, respectively. We also demonstrated that the method can be used for determining the relative quantities of proteins comigrating during electrophoretic separation.  相似文献   

19.
We compared the use of wet and dry two-dimensional electrophoresis (2-DE) gels for in-gel tryptic digestion and subsequent analysis by mass spectrometry, first using bovine serum albumin (BSA) as a model protein and then using unknown proteins from an extract of the silkworm midgut. The gel was either dried at 80 degrees C or left wet. Upon analysis of BSA, there was little difference in peptide recovery from 2-DE or in mass spectrum between the dry and the wet gels. The midgut extract was resolved into more than 1,100 protein spots by 2-DE, and 40 of these spots were sampled for further analysis. For all of the 40 proteins, the results obtained from dry and wet gels were quite similar in mass spectra and protein identification, although the relative amounts of peptides from tryptic digestion ranged from 45 to 146%. Based on these results, we confirmed the utility of dry electrophoretic gels for proteomics of insect extracts.  相似文献   

20.
Rowland MM  Bostic HE  Gong D  Speers AE  Lucas N  Cho W  Cravatt BF  Best MD 《Biochemistry》2011,50(51):11143-11161
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P?], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P? that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P? headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P? headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P?-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号