首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In flow cytometry cell autofluorescence often interferes with efforts to measure low levels of bound fluorescent antibody. We have developed a way to correct for autofluorescence on a cell-by-cell basis. This results in improved estimates of real staining and better separation of the fluorescence histograms of stained and non-stained cells. Using a single laser, two-color fluorescence measurement system and two-color compensation electronics, autofluorescence and one fluorescent reagent are measured (rather than two fluorescent reagents). With fluorescein-conjugated antibodies the signal in the 515 to 555 nm range (green fluorescence) includes both fluorescein emission and part of the cellular autofluorescence. In the cases we have investigated, autofluorescence collected at wavelengths above 580 nm ("red") is well correlated with the green autofluorescence of the cells. A fraction of this red fluorescence is subtracted from the green fluorescence to produce an adjusted fluorescein output on which unstained cells have zero average signal. Use of this method facilitates the selection of rare cells transfected with surface antigen genes. Culture conditions affect the level of autofluorescence and the balance between red and green autofluorescence. When applied with fluorescein-conjugated reagents, the technique is compatible with the use of propidium iodide for live/dead cell discrimination.  相似文献   

2.
A C Begg  I Hofland 《Cytometry》1991,12(5):445-454
The development of antibodies to DNA-incorporated thymidine analogs has in turn led to the development of flow cytometric techniques for rapidly measuring cell kinetics parameters. More recently, these techniques have been applied to clinical tumor material. One problem with such measurements has been the difficulty of distinguishing malignant cells from coexistent normal cells in the biopsy material. In the present study, the feasibility of selecting out the desired malignant cell population for kinetic analysis from a mixture of cells was tested in vitro. An anticytokeratin antibody was used to discriminate between a mixture of tumor cells (cytokeratin positive) and normal cells (cytokeratin negative). The cell lines chosen for the study, A549 human lung carcinoma cells and Chinese hamster ovary (CHO) cells, were pulse labeled with iododeoxyuridine (IdUrd) and sampled every hour up to 16 hours. Selecting out cells from the mixture required the application of three-color fluorescence flow cytometry, which was carried out using the fluorochromes FITC (fluorescein isothionate, green fluorescence, IdUrd-DNA antibody), PE (phycoerythrin, orange fluorescence, cytokeratin antibody), and PI (propidium iodide, red fluorescence, DNA). This allowed single laser excitation. The staining procedure involved incubation with the IdUrd antibodies (specific antibody plus FITC-conjugated second antibody) followed by the cytokeratin antibodies (specific antibody plus PE-conjugated second antibody) and lastly by the DNA stain containing RNase. Two analysis methods of the IdUrd/DNA cytograms were applied: a mid-S window analysis and a relative movement (RM) analysis. Results of the analyses for cells selected out of mixtures were compared with results of cells stained and analyzed separately. A clear separation of the two cell lines could be obtained on the basis of orange fluorescence (cytokeratin content) despite a large overlap of their DNA histograms. By gating on high or low orange fluorescence, almost pure populations of the individual cell types could be selected out for further kinetic analysis. Little difference was seen, with both the mid-S and RM analyses, between cells gated from mixtures or stained separately. It is concluded that this technique is feasible for use on clinical material, provided good cell suspensions can be obtained, leading to the hope of increasing the accuracy of kinetic measurements on human tumors.  相似文献   

3.
Ulex europaeus lectin (UEA) labelled with fluorescein isothiocyanate (FITC), rhodamine or colloidal gold, localized l-fucose in maize root cap cells and secreted root cap slime. Free-hand sections of maize root apices stained with FITC-UEA or rhodamine-UEA and examined by fluorescence microscopy yielded satisfactory results as long as the stains were freed of unconjugated dye, the sections treated with osmium tetroxide vapour to quench autofluorescence, and the samples incubated at 37°C. This resulted in successful labelling with a lower concentration of fluorochrome-lectin conjugate than reported by previous workers. Rhodamine-UEA was superior to FITC due to the lower primary fluorescence of the root tip observed under green light.Thin sections from glutaraldehyde fixed and Spurr's resin embedded maize root tips were treated with UEA bound to colloidal gold. Gold particles were found within sloughed cells and root cap cells, particularly concentrated over the Golgi complex, Golgi-derived vesicles and within the secretory slime products.  相似文献   

4.
One-parameter (nuclear DNA) and two-parameter (nuclear DNA and protein or cellular light scatter) measurements of cervical smears were performed using an ICP 11 and a cytofluorograf 4800 respectively. A total of about 1000 cases was analyzed. For the estimation of nuclear DNA alone two fluorochromes were tested (ethidium bromide (EB) and mithramycin (MMC)) combined with three different methods of cell preparation. For the two-parameter measurements cells were double stained with EB and fluorescein isothiocyanate (FITC). Red fluorescence (EB) versus green fluorescence (FITC) or red fluorescence versus scatter were recorded. A computer analysis of the one-parameter histograms was performed using discriminant analysis and the results were compared with the cytodiagnosis of microscopic specimens stained with the Papanicolaou technique. The error rates of the flow cytometric (FCM) data were as follows: (a) standard EB staining, 11% false negative, 26% false positive, 6% unsatisfactory results; (b) pepsination of vital cells and EB staining, 12% false negative, 14% false positive and 4% unsatisfactory results; (c) MMC staining, 10% false negative, 65% false positive and 5% unsatisfactory results. Our two-parameter measurements prove that, as confirmed by cell sorting, red fluorescence versus scatter allows separation of at least three subpopulations in most analyzed samples: (a) anucleated cells; (b) leukocytes; and (c) intermediate and superficial cells.  相似文献   

5.
In studies on embryonic development, treated and control ova could be co-mixed before transfer to recipients if nontoxic labels for ova were available. These experiments were conducted to determine whether pig ova would continue to cleave after being stained with the fluorochromes tetramethylrhodamine isothiocyanate (TRITC) and fluorescein isothiocyanate (FITC). In the first experiment, pig ova stained with TRITC and unstained control ova were transferred into opposite oviducts of recipient gilts. In the second experiment, ova stained with TRITC and ova stained with FITC were transferred into opposite oviducts of recipient gilts. Embryos were recovered 96 h after transfer (Day 6; Day 0 = onset of estrus), the presence of fluorescence was determined, and the number of nuclei per embryo was assessed. Stained ova retained sufficient fluorochrome to permit detection until the zonae pellucidae were shed. Development of embryos stained with TRITC was equal to that of unstained control embryos. However, development of embryos stained with FITC appeared slightly retarded in comparison to that of TRITC-stained embryos. These findings demonstrate the efficacy of the fluorescent staining technique for pig ova during the first six days of pregnancy.  相似文献   

6.
A simple method with which to determine the cell cycle parameters, TG1, TS and TG2M (the durations of the G1, S and G2 + M phases) is described. V79 Chinese hamster lung cells were used to evaluate the method. After continuous labeling with bromodeoxyuridine (BrdU), V79 cells were stained with anti BrdU-monoclonal antibody with FITC (fluorescein isothiocyanate) and with PI (propidium iodide). The individual cells were checked by flow cytometry for green and red fluorescences whose signal intensities corresponded to the BrdU and cellular DNA contents. The durations of G1, S and G2 + M phases of V79 cells were determined by measuring the cell fractions containing the nonlabeled G1, labeled S and nonlabeled G2 + M phases. The reliability of this method is discussed.  相似文献   

7.
Two new fluorochromes, PicoGreen® and SYTOX Green? stain (Molecular Probes, Inc.), are useful with flow cytometry for quantitative detection of cellular DNA in a variety of marina phytoplankton. The basic instrument configuration of modern low-power flow cytometers (15 mW, 488 nm excitation) is sensitive enough to detect the DNA signal in nearly all of the 121 strains (from 12 taxonomic classes)examined. The major advantages of these dyes over others are 1)suitability for direct use in seawater, 2)green fluorescence emission of the DNA-dye complex (wavelength 525 ± 15 nm) showing no overlap with the autofluorescence of the plankton pigments in the red band, 3) high fluorescence yield of the DNA-dye complex with an increase in fluorescence > 100-fold compared to the unstained cell, and 4)dyes can be used to quantify double-stranded DNA. The high sensitivity allowed the quantification of the DNA of the smallest known phyto-plankter (Prochlorococcus) as well as bacteria found in some of the algal cultures. Of the 12 taxonomic classes tested, only the 3 Nannochloropsis spp. (Eustagmatophyceae) stained poorly, and a few members of the Chlorophyceae and Pelagophyceae showed poor staining occasionally. In general, maximal fluorescence was achieved within 15 min after addition of the dye. Although the PicoGreen dye stained some living phytoplankton species, preservation is recommended for quantitation. SYTOX Green did not stain live cells. The combination of the dyes, therefore, allows the discrimination between live and dead cells in some algal groups (Prochlorococcus, diatoms, prasinophytes, and pelagophytes). Paraformaldehyde was preferred over glutaraldehyde for fixation to avoid (induced) green autofluorescence. Total DNA values measured in 90 algal species (ca. 121 strains) varied by a factor of 20,000. The lowest values were found in Prochlorococcus and the highest in a large dinoflagellate (Prorocentrum micans). DNA content appears to be a scaleable cell component covarying with the carbon and nitrogen contents of the phytoplankton cells. This covariation allows the total DNA content to be used as an accurate, independent estimate of total cell carbon biomass in unicellular pelagic phytoplankton.  相似文献   

8.
Immunocytochemistry is a powerful tool for detection and visualization of specific molecules in living or fixed cells, their localization and their relative abundance. One of the most commonly used fluorescent DNA dyes in immunocytochemistry applications is 4′,6-diamidino-2-phenylindole dihydrochloride, known as DAPI. DAPI binds strongly to DNA and is used extensively for visualizing cell nuclei. It is excited by UV light and emits characteristic blue fluorescence. Here, we report a phenomenon based on an apparent photoconversion of DAPI that results in detection of a DAPI signal using a standard filter set for detection of green emission due to blue excitation. When a sample stained with DAPI only was first imaged with the green filter set (FITC/GFP), only a weak cytoplasmic autofluorescence was observed. Next, we imaged the sample with a DAPI filter set, obtaining a strong nuclear DAPI signal as expected. Upon reimaging the same samples with a FITC/GFP filter set, robust nuclear fluorescence was observed. We conclude that excitation with UV results in a photoconversion of DAPI that leads to detection of DAPI due to excitation and emission in the FITC/GFP channel. This phenomenon can affect data interpretation and lead to false-positive results when used together with fluorochrome-labeled nuclear proteins detected with blue excitation and green emission. In order to avoid misinterpretations, extra precaution should be taken to prepare staining solutions with low DAPI concentration and DAPI (UV excitation) images should be acquired after all other higher wavelength images. Of various DNA dyes tested, Hoechst 33342 exhibited the lowest photoconversion while that for DAPI and Hoechst 33258 was much stronger. Different fixation methods did not substantially affect the strength of photoconversion. We also suggest avoiding the use of mounting medium with high glycerol concentrations since glycerol showed the strongest impact on photoconversion. This photoconversion effect cannot be avoided even when using narrow bandpass filter sets.  相似文献   

9.
We have developed a novel flow cytometric procedure that allows determinations of properties of protein excretion in the growth medium on a cell-by-cell basis in Saccharomyces cerevisiae. The procedure is based on labelling of a periplasmically secreted protein with antibodies conjugated to a fluorescent marker such as fluorescein isothiocyanate (FITC). The staining conditions did not perturb cell growth after resuspension of stained cells in growth medium. Decrease in fluorescence was found to correlate with excretion of glucoamylase into the growth medium. The analysis of the staining pattern over time provides information on the behaviour of individual cells belonging to different cell-cycle phases and can be used to calculate the specific excretion rate of the overall population.  相似文献   

10.
BACKGROUND: Combined analysis of DNA content and immunofluorescence on single cells by flow cytometry provides information on the proliferative response of subpopulations to stimuli in mixed cell preparations; however, in low-viability cell preparations, dead cells interfere with accurate flow cytometric data analysis because of nonspecific binding of antibodies and altered DNA-staining profiles. Light scatter differences between nonviable and viable cells are unreliable, particularly after the cell permeabilization step that is necessary for DNA staining. We developed a method for identification of nonviable cells by fluorescence in cell preparations that are stained simultaneously for cell surface or intracellular immunofluorescence and DNA content. MATERIALS AND METHODS: Nonviable cells that have lost membrane integrity are identified by uptake of 7-amino-actinomycin D (7-AAD). Transfer of 7-AAD from stained nonviable cells to unstained viable cells after permeabilization is prevented by blocking DNA binding with nonfluorescent actinomycin D (AD). Pyronin Y(G) (PY) is used for DNA staining because the orange spectral emission of PY can be separated from the green fluorescein isothiocyanate (FITC) emission and the red emission of 7-AAD, respectively. RESULTS: Application of the method to the analysis of the T-cell leukemia cell line Molt-4f and of cultured human peripheral blood mononuclear cells is presented. In both cell preparations, 7-AAD staining permitted reliable dead cell exclusion. Live, 7-AAD-negative Molt-4f cells showed higher expression levels of cell surface CD4 and of intracellular CD3, showed a higher proportion of cells in the G1 phase of the cell cycle, and showed a lower coefficient of variation of the G1 peak compared with data obtained from all the cells in the preparation. Live, CD8+ lymphocytes from OKT3-stimulated cultures of human peripheral blood mononuclear cells showed a specific proliferative response as measured by DNA content analysis. CONCLUSIONS: The results show that cells stained with FITC-labeled antibodies can be analyzed by single-laser flow cytometry for DNA content combined with dead cell discrimination. Furthermore, they emphasize the need for exclusion of dead cells from the analysis of cell preparations with low viability to obtain reliable data on immunofluorescence and cell-cycle distributions.  相似文献   

11.
Chen JC  Bigelow N  Davis BH 《Cytometry》2000,42(4):239-246
BACKGROUND: Quantitation of adult erythrocytes (RBC) containing fetal hemoglobin (F cells) is of potential clinical utility in evaluating erythropoietic disorders, such as myelodysplasia and hemoglobinopathies, and in monitoring F-cell augmenting therapy. F-cell counting methodologies include fluorescence microscopy and flow cytometry. Previous flow cytometric methods have employed an isotype antibody control to distinguish F cells from non-F cells. We investigated the feasibility of using the orange autofluorescence signal (FL2) in glutaraldehyde-fixed RBC to substitute for fluorescein isothiocyanate (FITC)-labeled isotype control antibody use in F-cell quantitation. METHODS: Our previously published method for fetal red cell detection in fetomaternal hemorrhage was used, employing a FITC-labeled anti-hemoglobin F (HbF) monoclonal antibody reagent. Blood samples with varying F-cell counts were quantitated for F cells using both immunofluorescence microscopy and flow cytometry comparing FITC-labeled isotype to FL1 thresholding defined by FL2 autofluorescence. RESULTS: F cell percentages obtained by using an FL2 defined threshold for FL1 gating correlated well with expected values in diluted blood samples (r(2) = 0.994, slope = 1. 019, intercept = 0.24), values obtained using an isotype control (r(2) = 0.996, slope = 1.012, intercept = -0.17), and microscopic immunofluorescence counts (r(2) = 0.989, slope = 0.999, intercept = -0.72). F-cell quantitation by the isotype control and FL2 autofluorescence methods was also comparable in 40 blood samples (r(2) = 0.994, slope = 1.014, intercept = 0.03). Intra-assay, interobserver, and interinstrument precision with this autofluorescence gating method exhibited low imprecision (coefficient of variation <14%). CONCLUSION: This novel method is a more objective and less laborious alternative for F-cell quantitation by flow cytometry compared to using an isotype control or microscopy, thereby providing a more robust methodology for clinical studies and consideration as a laboratory reference method for F-cell counting.  相似文献   

12.
Allophycocyanin (APC) has a broad absorption spectrum permitting several different lasers to be used to excite this dye in a flow cytometer. A comparison was made between a dye laser and a helium-neon (HeNe) laser for the excitation of APC as an immunofluorescent chromophore. The ratio of fluorescence of stained to unstained lymphocytes (signal to background) was used to assess differences in sensitivity. In determining the best wavelength for operating the dye laser, it was found that there was little difference in the ability to separate the positive-labelled cells from the unstained cells using 600 nm or 633 nm light for excitation of APC. A study of the effect of laser power on the signal to background identified a nonlinear relationship. It was found that the sensitivity obtained with 47 mW of 633 nm light from a HeNe laser was near the maximum attainable. This sensitivity was comparable to that obtained using phycoerythrin as an immunofluorescence chromophore. APC had the added advantage of being applicable to the study of highly autofluorescent cells. Exciting this chromophore using red light dramatically decreased the autofluorescence observed even on alveolar macrophages.  相似文献   

13.
Fluorescence spectra were obtained from cells from sputum and pleural effusions stained with different fluorescent dyes and fixed by alternate methods. The spectra were referenced to a standard allowing for fluorescence comparisons of unstained and stained cells under various conditions. The metachromasia of acridine orange-stained cells offers nuclear/cytoplasmic differentiation in a single stain; mithramycin and propidium iodide do not. Unstained cells have an appreciable amount of green (546 nm) fluorescence, as does Carbowax in Saccomanno's preservative. Cytoplasm stained with acidine orange also has appreciable green fluorescence. Consequently, cells with much cytoplasm have high total fluorescence. Cytoplasmic fluorescence is negligible with mithramycin or propidium iodide. The metachromasia of acridine orange-stained cells is altered by alcohol and Carbowax levels in fixatives, keeping other factors constant.  相似文献   

14.
BACKGROUND: Spectral interference (overlap) from phagocytosed green-yellow (GY) microspheres in the flow cytometric, red fluorescence emission measurement channel causes errors in quantifying damaged/dead alveolar macrophages by uptake of propidium iodide. METHODS: Particle burdens of uniform GY fluorescent microspheres phagocytosed by rat alveolar macrophages and the discrimination of damaged/dead cells as indexed by propidium iodide uptake were assessed with conventional and phase-sensitive flow cytometry. RESULTS: The fluorescence spectral emission from phagocytosed microspheres partly overlapped the propidium iodide red fluorescence emission and interfered with the measurement of damaged/dead cells when using conventional flow cytometry without subtractive compensation. This caused errors when estimating the percentage of nonviable, propidium iodide-positive, phagocytic macrophages. The interference was eliminated by employing phase-sensitive detection in the red fluorescence measurement channel based on differences in fluorescence lifetimes between the fluorescent microspheres and propidium iodide. Intrinsic cellular autofluorescence, whose fluorescence lifetime is approximately the same as that of the phagocytosed microspheres, also was eliminated in the phase-sensitive detection process. Because there was no detectable spectral interference of propidium iodide in the green fluorescence (phagocytosis) measurement channel, conventional fluorescence detection was employed. CONCLUSIONS: Phase-resolved, red fluorescence emission measurement eliminates spectral overlap errors caused by autofluorescent phagocytes that contain fluorescent microspheres in the analyses of propidium iodide uptake.Cytometry 39:45-55, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

15.
A simple microscopic method to three-dimensionally differentiate between various members in photo-autotrophic biofilm systems is described. By dual-channel single-photon (confocal) and two-photon laser scanning microscopy, the signals in the red and far red channels as well as their combination can be simultaneously recorded. The method takes advantage of the autofluorescent signal of cyanobacteria-recorded in the red and far red channel and the autofluorescent signal of the green algae-recorded in the far red channel only. The differentiation is based on the specific pigment composition of cyanobacteria and green algae in combination with the appropriate filter settings for detection of the autofluorescent emission signals. The method allows the non-destructive, three-dimensional examination of fully hydrated interfacial microbial communities at high resolution as well as the clear separation between autofluorescent signals of cyanobacteria and green algae. Furthermore, there is a third option to record additional signals simultaneously such as nucleic acid stained bacteria, bacteria labeled with phylogenetic probes or glycoconjugates stained by using lectins. With state of the art laser scanning microscopes, even a fourth channel is available for recording yet another parameter, e.g. in the reflection (single-photon only) or fluorescence (single- and two-photon) mode. Thus the approach represents a convenient tool to study multiple parameters of complex photo-autotrophic biofilm systems.  相似文献   

16.
Flow cytometric analysis of Chlamydia trachomatis interaction with L cells   总被引:2,自引:0,他引:2  
Immunofluorescent staining and flow cytometric analysis have been investigated as means of studying the early stages of in vitro infection of Chlamydia trachomatis. The lymphogranuloma venereum strain of C. trachomatis was grown in vitro in L cells, fixed in p-formaldehyde, stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal antibody to the chlamydial major outer membrane protein, and analyzed flow cytometrically. Infected cells stained 50-100 times more intensely than uninfected cells, and they could easily be discriminated by flow analysis. The number of infected cells and the fluorescence intensity of individual cells were proportional to the multiplicity of infection. The attachment of purified elementary bodies to L cells could be analyzed by immunofluorescence and flow cytometry. Cells exposed to 0.26 inclusion-forming units/cell could be discriminated from an unexposed population. Flow analysis of purified elementary bodies was possible after fluorescent staining with the aid of a laser-based cytometer and gating on low volume.  相似文献   

17.
Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are consistently unable to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells.  相似文献   

18.
M Roederer  R F Murphy 《Cytometry》1986,7(6):558-565
Autofluorescence of cells can be a major portion of the fluorescence signal in many systems, especially when fluorescent conjugates are used to study receptor-ligand systems for which there are less than 70,000 receptors per cell. We have devised a method for the cell-by-cell correction of autofluorescence for flow cytometric data by using an additional parameter to measure and correct for autofluorescence in the fluorescence channel. The principle has been extended to allow simultaneous correction for autofluorescence and dual-fluorescence spillover compensation in samples labeled with two different fluorochromes; all corrections were done in software, making them applicable to any flow cytometer. The autofluorescence correction method was used to analyze the acidification of epidermal growth factor (EGF) by Swiss 3T3 cells. EGF is acidified to pH 6.2 starting two min after labeling, with a half-time for acidification of 45 s.  相似文献   

19.
Summary Flow cytometry was used to provide a rapid and accurate assessment of electroporation-induced uptake of macromolecules into plant protoplasts. Rice protoplasts were electroporated in the presence of fluorescein isothiocyanate-conjugated dextran (FITC-dextran). After washing, the protoplasts were resuspended in a solution containing propidium iodide which intercalates with DNA, but which is excluded by an intact plasma membrane. Electroporation in the presence of FITC-dextran gave rise to populations of protoplasts that fluoresced green or yellow due to the presence of non-conjugated FITC. Non-viable protoplasts fluoresced red because of their inability to exclude propidium iodide molecules. Flow cytometry was used to resolve and quantify these protoplast populations and thus identify optimal conditions for macromolecule uptake. A direct relationship was observed between FITC-dextran uptake and transient gene expression following plasmid uptake. Thus, simultaneous electroporation of protoplasts with foreign DNA and FITC-dextran followed by fluorescence activated cell sorting may permit partial selection of transformed cells and so reduce the need for a selectable marker.Abbreviations ADC analogue to digital converter - CAT chloramphenicol acetyl transferase (enzyme) - cat chloramphenicol acetyl transferase (gene) - CPW solution cell and protoplast wash solution - DC direct current - EF electrofusion - FALS forward angle light scatter - FITC fluorescein isothiocyanate - FITC-dextran fluorescein isothiocyanate conjugated dextran - PI propidium iodide - PMT photomultipliertube - TLC thin layer chromatography  相似文献   

20.
Immunofluorescence detection was performed by tissue sectioning and membrane entrapment of Xylella fastidiosa from the inoculated hybrid selection F8909-08 (Vitis rupestris A. de Serres x V. arizonica/candicans b43-17; resistant) and Chardonnay (susceptible). In both techniques, tissue sections and bacteria-trapped polycarbonate membranes were incubated with specific polyclonal IgG and stained with fluorescein isothiocyanate (FITC)-conjugated IgG from rabbits to X. fastidiosa cells. The stained preparations were observed by fluorescence microscopy. Rapid identification of the bacteria within 3 weeks post inoculation (wpi) was possible in thin cross sections of the petioles, which allowed penetration of the specific antibody. Examination of the bacteria over time was also possible, and allowed observation of bacterial multiplication and invasion of xylem vessels. The membrane entrapment technique was able to isolate bacteria at low concentrations in infected but asymptomatic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号