首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

2.
The components of the active molybdenum cofactor in xanthine oxidase was found. The molybdenum cofactor is responsible for the enzymatic activity of the methyl viologen-nitrate reduction. The inactivation of the methyl viologen-nitrate reductase by cyanide is accompanied by the extraction of sulfur from the enzyme. Cyanide inactivated enzyme can be reactivated by incubation with Na2S. The results suggest that the active site of the methyl viologen-nitrate reductase contains an atom of active sulfur which does not originate from the acid labile sulfur of the Fe/S cluster, neither originate from the organic sulfur of the cysteine residue, nor from the sulfur of persulfide. It is probably another type of inorganic sulfur near the molybdenum atoms, The flavin-free xanthine oxidase may be loss entirely its oxidation activity of xanthine to uric acid. In contrast, the activity of the methyl viologen-nitrate reductase is nearly completly insensitive to the flavinfree treatment. Studies on the Fe-free xanthine oxidase, obtained by metal-binding agent phenanthroline and by acid treatment, revealed Fe (in xanthine oxidase it is the Fe of the Fe/S cluster) is also one of the active conponents, functioning in the methyl viologen-nitrate reductase, besides molybdenum.  相似文献   

3.
The attenuation of the sulfite:cytochrome c activity of sulfite oxidase upon treatment with ferricyanide was demonstrated to be the result of oxidation of the pterin ring of the molybdenum cofactor in the enzyme. Oxidation of molybdopterin (MPT) was detected in several ways. Ferricyanide treatment not only abolished the ability of sulfite oxidase to serve as a source of MPT to reconstitute the aponitrate reductase in extracts of the Neurospora crassa mutant nit-1 but also eliminated the ability of sulfite oxidase to reduce dichlorobenzenoneindophenol after anaerobic denaturation. Additionally, the absorption spectrum of anaerobically denatured ferricyanide-treated molybdenum fragment of rat liver sulfite oxidase was typical of fully oxidized pterins. Ferricyanide treatment had no effect on the protein of sulfite oxidase or on the sulfhydryl-containing side chain of MPT. Quantitation of the ferricyanide reaction showed that 2 mol of ferricyanide were reduced per mol of MPT oxidized, yielding a fully oxidized pterin. These results corroborate the previously reported conclusion that the native state of reduction of MPT in sulfite oxidase is at the dihydro level (Gardlik, S., and Rajagopalan, K.V. (1990) J. Biol. Chem. 265, 13047-13054). As a result of oxidation of the pterin ring, the affinity of MPT for molybdenum is decreased, leading to eventual loss of molybdenum. Because the loss of molybdenum is slow, a population of sulfite oxidase molecules can exist in which molybdenum is complexed to oxidized MPT. These molecules retain sulfite:O2 activity, a function apparently dependent solely on the molybdenum-thiolate complex, yet have greatly decreased sulfite:cytochrome c activity, a function requiring heme as well as the molybdenum center of holoenzyme. These observations suggest that the pterin ring of MPT participates in enzyme function, possibly in electron transfer, directly in catalysis, or by controlling the oxidation/reduction potential of molybdenum.  相似文献   

4.
Inactivation of glutathione peroxidase by superoxide radical   总被引:28,自引:0,他引:28  
The selenium-containing glutathione peroxidase, when in its active reduced form, was inactivated during exposure to the xanthine oxidase reaction. Superoxide dismutase completely prevented this inactivation, whereas catalase, hydroxyl radical scavengers, or chelators did not, indicating that O2 was the responsible agent. Conversion of GSH peroxidase to its oxidized form, by exposure to hydroperoxides, rendered it insensitive toward O2. The oxidized enzyme regained susceptibility toward inactivation by O2 when reduced with GSH. The inactivation by O2 could be reversed by GSH; however, sequential exposure to O2 and then hydroperoxides caused irreversible inactivation. Reactivity toward CN- has been used as a measure of the oxidized form of GSH peroxidase, whereas reactivity toward iodoacetate has been taken as an indicator of the reduced form. By these criteria both O2 and hydroperoxides convert the reduced form to oxidized forms. A mechanism involving oxidation of the selenocysteine residue at the active site has been proposed to account for these observations.  相似文献   

5.
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.  相似文献   

6.
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a member of the xanthine oxidase (XO) family of molybdenum cofactor containing enzymes and catalyzes the irreversible removal of a phenolic hydroxy group by reduction, yielding benzoyl-CoA and water. In this work the effects of various activity modulating compounds were characterized by kinetic, electron paramagnetic resonance (EPR) spectroscopic, and X-ray crystallographic studies. 4-HBCR was readily inactivated by cyanide and by the reducing agents titanium(III) citrate and dithionite; in contrast, reduced viologens had no inhibitory effect. Cyanide inhibition occurred in both the oxidized and reduced state of 4-HBCR. In the reduced state, cyanide-inhibited 4-HBCR was reactivated by simple oxidation. In contrast, reactivation from the oxidized state was only achieved in the presence of sulfide. Dithionite-inhibited 4-HBCR was reactivated by oxidation, whereas inhibition by titanium(III) citrate was irreversible. The previously reported inhibitory effect of azide could not be confirmed; instead, azide rather protected the enzyme from inactivation by titanium(III) citrate. The EPR spectra of the Mo(V) states were nearly identical in the noninhibited methyl viologen and in the dithionite-inhibited states of 4-HBCR; they exhibited a hyperfine splitting due to magnetic coupling with two solvent-exchangeable protons. The cyanide-treated enzyme showed the typical desulfo-inhibited Mo(V) EPR signal in D 2O, whereas in H 2O the hyperfine splitting was altered but indicated no loss of Mo(V)-proton interactions. The structures of dithionite- and azide-bound 4-HBCR were solved at 2.1 and 2.2 A, respectively. Both dithionite and azide bound directly to equatorial ligation sites of the Mo atom. The results obtained revealed further insights into the active site of an unusual member of the XO family of molybdenum cofactor containing enzymes.  相似文献   

7.
Carbon monoxide:methylene blue oxidoreductase, the key enzyme of CO-oxidation in energy metabolism of the carboxydobacterium Pseudomonas carboxydovorans, has been isolated in good yield and purity and found to contain FAD, molybdenum, iron, and labile sulfide in the ratio of 1:1:4:4. The enzyme is, therefore, a new molybdenum-containing iron-sulfur flavoprotein, exhibiting chemical and spectral properties quite similar to those of xanthine oxidase. Analytical data on the spectral characteristics of the enzyme in the oxidized and various reduced states are presented. Carbon monoxide:methylene blue oxidoreductase turned out to be photoreducible in the presence of EDTA and urea and was subject to reoxidation by air oxygen; no flavoprotein semiquinone was formed. Unphysiological electron acceptors, e.g. methylene blue, were used as oxidizing substrates whereas NAD or NADP turned out to be ineffective. Methylene blue reduction with CO was not affected by the presence of allopurinol, and carbon monoxide:methylene blue oxidoreductase was not able to catalyze the reduction of methylene blue with xanthine, adenine, or aldehydes. CO was the only reducing substrate used by the enzyme. Carbon monoxide:methylene blue oxidoreductase formed no sulfite adduct, and the reactivity with ferricyanide or cytochrome c was significant but slow. As known for other molybdenum hydroxylases, carbon monoxide:methylene blue oxidoreductase was rapidly inactivated by methanol, but the enzyme exhibited no ability to catalyze the oxidation of NADH with methylene blue, and NAD was not able to overcome methanol inhibition.  相似文献   

8.
Mendel RR 《Plant cell reports》2011,30(10):1787-1797
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing important reactions within the cell. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In plants, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins that also participate in Moco-insertion into the cognate apoproteins. Xanthine dehydrogenase and aldehyde oxidase, but not the other Mo-enzymes, require a final step of posttranslational activation of their catalytic Mo-center for becoming active.  相似文献   

9.
Bacterial xanthine oxidase from Arthrobacter S-2.   总被引:4,自引:1,他引:3       下载免费PDF全文
Arthrobacter S-2, originally isolated by enrichment on xanthine, produced high levels of xanthine oxidase activity, requiring as little as a 20-fold purification to approach homogeneity with some preparations. Molecular oxygen, ferricyanide, and 2,6-dichlorophenol-indophenol served as electron acceptors, but nicotinamide adenine dinucleotide did not. The enzyme was relatively specific when compared with previously studied xanthine-oxidizing enzymes, but at least one purine was observed to be oxidized at each of the three positions of the purine ring that have been subject to oxidation by this type of enzyme. The enzyme had a relatively high Km for xanthine (1.3 X 10(-4) M), and substrate inhibition was not observed with this compound, in contrast to the enzyme from cow's milk. In fact, an opposite effect was observed, and double-reciprocal plots with xanthine as the variable substrate showed a concave downward deviation at high concentrations. At 2.5 mM xanthine the enzyme had a specific activity approximately 50 times that of the most active preparations of the milk enzyme. The spectrum of the Arthrobacter enzyme resembled that of milk xanthine oxidase, suggesting a similarity of the prosthetic centers of the two enzymes. The bacterial enzyme was relatively small and may be dimeric, with approximate native and subunit molecular weights of 146,000 and 79,000, respectively.  相似文献   

10.
Cell biology of molybdenum   总被引:7,自引:0,他引:7  
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are (1) sulfite oxidase, which catalyzes the final step in the degradation of sulfur-containing amino acids and is involved in detoxifying excess sulfite, (2) xanthine dehydrogenase, which is involved in purine catabolism and reactive oxygen production, (3) aldehyde oxidase, which oxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisic acid, and in autotrophic organisms also (4) nitrate reductase, which catalyzes the key step in inorganic nitrogen assimilation. All Mo-enzymes, except plant sulfite oxidase, need at least one more redox active center, many of them involving iron in electron transfer. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. Moco as released after synthesis is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-carrier proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the post-translational sulfuration of their Mo-site for becoming active. This final maturation step is catalyzed by a Moco-sulfurase enzyme, which mobilizes sulfur from l-cysteine in a pyridoxal phosphate-dependent manner as typical for cysteine desulfurases.  相似文献   

11.
Molybdenum(V) e.p.r. spectra from reduced forms of aldehyde oxidase were obtained and compared with those from xanthine oxidase. Inhibited and Desulpho Inhibited signals from aldehyde oxidase were fully characterized, and parameters were obtained with the help of computer simulations. These differ slightly but significantly from the corresponding parameters for the xanthine oxidase signals. Rapid type 1 and type 2 and Slow signals were obtained from aldehyde oxidase, but were not fully characterized. From the general similarities of the signals from the two enzymes, it is concluded that the ligands of molybdenum must be identical and that the overall co-ordination geometries must be closely similar in the enzymes. The striking differences in substrate specificity must relate primarily to structural differences in a part of the active centre concerned with substrate binding and not involving the catalytically important molybdenum site.  相似文献   

12.
The inactivation of sulfite oxidase, a molybdoenzyme containing the Mo cofactor, by arsenite and periodate was investigated. In contrast to ferricyanide (Gardlik, S., and Rajagopalan, K.V. (1991) J. Biol. Chem. 266, 4889-4895), neither of these reagents causes oxidation of the pterin ring of the Mo cofactor. Instead, inactivation by these reagents appears to involve attack on sulfhydryl groups at the active site of the enzyme. The inactivation of sulfite oxidase by arsenite was shown to be dependent on the presence of O2 and on the enzymatic oxidation of arsenite to arsenate. The inactivation was preventable by the presence of sulfite, or by the use of cytochrome c as the electron acceptor instead of O2. It is concluded that inactivation by arsenite is the result of arsenite displacement of Mo during enzymatic oxidation of arsenite to arsenate, when Mo transiently breaks its bond to protein or molybdopterin sulfhydryl(s) in order to provide a site for transfer of electrons to O2. Data indicate that arsenite is properly oriented to displace Mo only once every 20,800 turnovers, thus accounting for the slow rate of inactivation by this reagent. Inactivation of sulfite oxidase by periodate is believed to occur as the result of direct attack of periodate on the thiolate ligands of Mo, either those of the protein and/or molybdopterin, leading to Mo loss. Treatment of enzyme with even low levels of periodate resulted in loss of Mo and both sulfite:cytochrome c and sulfite:O2 activities. Molybdopterin of periodate-inactivated enzyme retained the ability to reconstitute nitrate reductase apoprotein in nit-1 extracts and the ability to reduce dichlorophenolindophenol, indicating that the pterin ring had not been oxidized.  相似文献   

13.
Mycobacterium vaccae 10 growing in methanol medium synthesizes two inducible alternative NAD(+)-dependent formate dehydrogenases (FDH). In the presence of molybdenum, the dominating form of the enzyme is FDHI with Mr 440 kDa and Km 0.32 mM for sodium formate. FDHI reduced ferricyanide as well as NAD+, and it was reversibly inactivated by formate. NAD+ stabilized FDHI against this inactivation. Under conditions of artificial molybdenum deficiency (tungsten in the medium), the second enzyme (FDHII) appeared with Mr about 93 kDa and Km 8.3 mM for sodium formate, and no FDHI activity was detected. FDHII did not reduce ferricyanide and was not inactivated by formate. The activity of FDHI was restored in tungsten-grown cells by pulse addition of molybdenum under conditions of blocked protein synthesis, suggesting the pre-existence of inactive apo-FDHI.  相似文献   

14.
Sulfite oxidase (EC 1.8.3.1), purified from chicken liver, is comprised of two identical subunits of 55 kDa, each of which contains a molybdenum and heme prosthetic group. The functional size of sulfite oxidase was determined by radiation inactivation analysis using both full, sulfite:cytochrome c reductase, and partial, sulfite:ferricyanide reductase, catalytic activities. Inactivation of full enzyme activity indicated a target size of 42 kDa while the partial activity indicated a target size of 25 kDa. These results confirm the earlier findings of two equivalent subunits and suggest the presence of a functional domain within the subunit structure that contains the molybdenum center and exhibits a smaller molecular mass than that of the enzyme subunit.  相似文献   

15.
Rhodobacter capsulatus xanthine dehydrogenase (XDH) forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds. We have developed an efficient system for the recombinant expression of R. capsulatus XDH in Escherichia coli. The recombinant protein shows spectral features and a range of substrate specificities similar to bovine milk xanthine oxidase. However, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. EPR spectra were obtained for the FeS centers of the enzyme showing an axial signal for FeSI, which is different from that reported for xanthine oxidase. X-ray absorption spectroscopy at the iron and molybdenum K-edge and the tungsten LIII-edge have been used to probe the different metal coordinations of variant forms of the enzyme. Based on a mutation identified in a patient suffering from xanthinuria I, the corresponding arginine 135 was substituted to a cysteine in R. capsulatus XDH, and the protein variant was purified and characterized. Two different forms of XDH-R135C were purified, an active (alphabeta)2 heterotetrameric form and an inactive (alphabeta) heterodimeric form. The active form contains a full complement of redox centers, whereas in the inactive form the FeSI center is likely to be missing.  相似文献   

16.
Here we report the cDNA-deduced amino-acid sequence of L-amino-acid oxidase (LAAO) from the Malayan pit viper Calloselasma rhodostoma, which shows 83% identity to LAAOs from the Eastern and Western diamondback rattlesnake (Crotalus adamanteus and Crotalus atrox, respectively). Phylogenetic comparison of the FAD-dependent ophidian LAAOs to FAD-dependent oxidases such as monoamine oxidases, D-amino-acid oxidases and tryptophan 2-monooxygenases reveals only distant relationships. Nevertheless, all LAAOs share a highly conserved dinucleotide-binding fold with monoamine oxidases, tryptophan 2-monooxygenases and various other proteins that also may have a requirement for FAD. In order to characterize Ca. rhodostoma LAAO biochemically, the enzyme was purified from snake venom to apparent homogeneity. It was found that the enzyme undergoes inactivation by either freezing or increasing the pH to above neutrality. Both inactivation processes are fully reversible and are associated with changes in the UV/visible range of the flavin absorbance spectrum. In addition, the spectral characteristics of the freeze-and pH-induced inactivated enzyme are the same, indicating that the flavin environments are similar in the two inactive conformational forms. Monovalent anions, such as Cl(-), prevent pH-induced inactivation. LAAO exhibits typical flavoprotein oxidase properties, such as thermodynamic stabilization of the red flavin semiquinone radical and formation of a sulfite adduct. The latter complex as well as the complex with the competitive substrate inhibitor, anthranilate, were only formed with the active form of the enzyme indicating diminished accessibility of the flavin binding site in the inactive form(s) of the enzyme.  相似文献   

17.
The chemistry common to molybdenum at the active centers of molybdoenzymes and at the surface of heterogeneous catalysts is described. Oxomolybdenum(VI) compounds catalyze selective oxidation of unsaturated hydrocarbons, e.g., propene to acrolein. Similarly, oxomolybdenum species take part in reactions catalyzed by molybdoenzymes, e.g., xanthine oxidase, sulfite oxidase, nitrate reductase. In these reactions H+, O2- or HO-, and electrons transfer between substrate molecules and molybdenum atoms and groups at the active centres. The chemistry involved is the acid-base and redox chemistry of molybdenum. Molybdenum disulfide catalyzes hydrogenation of unsaturated hydrocarbons, e.g., acetylene. The active site is a coordinately unsaturated molybdenum atom in a sulfur-ligand environment. The enzyme nitrogenase, which is a protein-bound iron-molybdenum sulfide, is also an excellent hydrogenation catalyst. Both catalysts exploit the chemistry of lower-valent molybdenum coordinated by sulfur. The extent to which understanding of the catalysis can be transferred between the two types of catalyst is assessed.  相似文献   

18.
Gwyer JD  Richardson DJ  Butt JN 《Biochemistry》2004,43(47):15086-15094
Cytochrome c nitrite reductase is a dimeric decaheme-containing enzyme that catalyzes the reduction of nitrite to ammonium. The contrasting effects of two inhibitors on the activity of this enzyme have been revealed, and defined, by protein film voltammetry (PFV). Azide inhibition is rapid and reversible. Variation of the catalytic current magnitude describes mixed inhibition in which azide binds to the Michaelis complex (approximately 40 mM) with a lower affinity than to the enzyme alone (approximately 15 mM) and leads to complete inhibition of enzyme activity. The position of the catalytic wave reports tighter binding of azide when the active site is oxidized (approximately 39 microM) than when it is reduced. By contrast, binding and release of cyanide are sluggish. The higher affinity of cyanide for reduced versus oxidized forms of nitrite reductase is immediately revealed, as is the presence of two sites for cyanide binding and inhibition of the enzyme. Formation of the monocyano complex by reduction of the enzyme followed by a "rapid" scan to high potentials captures the activity-potential profile of this enzyme form and shows it to be distinct from that of the uninhibited enzyme. The biscyano complex is inactive. These studies demonstrate the complexity that can be associated with inhibitor binding to redox enzymes and illustrate how PFV readily captures and deconvolves this complexity through its impact on the catalytic properties of the enzyme.  相似文献   

19.
Treatment of rat liver sulfite oxidase with trypsin leads to loss of ability to oxidize sulfite in the presence of cytochrome c as electron acceptor. Ability to oxidize sulfite with ferricyanide as acceptor is undiminished, while sulfite leads to O2 activity is partially retained. Gel filtration of the proteolytic products has led to the isolation of two major fragments of dissimilar size derived from sulfite oxidase. The smaller fragment has a molecular weight of 9500 and appears to be monomeric when detached from sulfite oxidase. It contains the heme in its cytochrome b5 structure, has no sulfite oxidase activity, and is reducible with dithionite but not with sulfite. The heme fragment can mediate electron transfer between pig liver microsomal NADH cytochrome b5 reductase and cytochrome c. The larger fragment has a molecular weight of 47,400 under denaturing conditions but elutes from Sephadex G-200 as a dimer. It contains no heme but retains all of the molybdenum and the modified sulfite-oxidizing capacity present in the proteolytic mixture. All of the EPR properties of the molybdenum center of native sulfite oxidase are retained in the molybdenum fragment. The molybdenum center is a weak chromophore with an absorption sectrum suggestive of coordination with sulfur ligands. Reduction by sulfite generates a spectrum attributable to molybdenum (V). Spectra of oxidized and sulfite-reduced preparations are sensitive to anions and pH. NH2-terminal analysis of native sulfite oxidase and the two tryptic fragments has permitted the conclusion that the sequence represented by the heme fragment is the NH2 terminus of native enzyme. These studies have demonstrated that the two cofactor moieties of sulfite oxidase are contained in distinct domains which are covalently held in contiguity by means of an exposed hinge region. Isolation of functional heme and molybdenum domains of sulfite oxidase after tryptic cleavage has demonstrated conclusively that the cytochrome b5 region of the molecule is required for electron transfer to the physiological acceptor, cytochrome c.  相似文献   

20.
R K Hughes 《Biochemistry》1992,31(12):3073-3083
Xanthine dehydrogenase has been purified to homogeneity by conventional procedures from the wild-type strain of the fruit fly Drosophila melanogaster, as well as from a rosy mutant strain (E89----K, ry5231) known to carry a point mutation in the iron-sulfur domain of the enzyme. The wild-type enzyme had all the specific properties that are peculiar to the molybdenum-containing hydroxylases. It had normal contents of molybdenum, the pterin molybdenum cofactor, FAD, and iron-sulfur centers. EPR studies showed its molybdenum center to be quite indistinguishable from that of milk xanthine oxidase. As isolated, only about 10% of the enzyme was present in the functional form, with most or all of the remainder as the inactive desulfo form. It is suggested that this may be present in vivo. Extensive proteolysis accompanied by the development of oxidase activity took place during isolation, but dehydrogenase activity was retained. EPR properties of the reduced iron-sulfur centers, Fe-SI and Fe-SII, in the enzyme are very similar to those of the corresponding centers in milk xanthine oxidase. The E89----K mutant enzyme variant was in all respects closely similar to the wild-type enzyme, with the exception that it lacked both of the iron-sulfur centers. This was established both by its having the absorption spectrum of a simple flavoprotein and by the complete absence of EPR signals characteristic of iron-sulfur centers in the reduced enzyme. Despite the lack of iron-sulfur centers, the mutant enzyme had xanthine:NAD+ oxidoreductase activity indistinguishable from that of the wild-type enzyme. Stopped-flow measurements indicated that, as for the wild-type enzyme, reduction of the mutant enzyme was rate-limiting in turnover. Thus, the iron-sulfur centers appear irrelevant to the normal turnover of the wild-type enzyme with these substrates. However, activity to certain oxidizing substrates, particularly phenazine methosulfate, is abolished in the mutant enzyme variant. This is one of the first examples of deletion by genetic means of iron-sulfur centers from an iron-sulfur protein. The relevance of our findings both to the roles of iron-sulfur centers in other systems and to the nature of the oxidizing substrate for the Drosophila enzyme in vivo are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号