首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency. We developed a technique to measure the multifractal characteristic parameter intimately associated with physiological activities through a frequency scale factor. This parameter is highly sensitive to physiological and pathological status. Mice received various drugs to imitate different physiological and pathological conditions, and the distributions of mass exponent spectrum curvature with scale factors from the electrocardiogram (ECG) signals of healthy and drug injected mice were determined. Next, we determined the characteristic frequency scope in which the signal was of the highest complexity and most sensitive to impaired cardiac function, and examined the relationships between heart rate, heartbeat dynamic complexity, and sensitive frequency scope of the ECG signal. We found that all animals exhibited a scale factor range in which the absolute magnitudes of ECG mass exponent spectrum curvature achieve the maximum, and this range (or frequency scope) is not changed with calculated data points or maximal coarse-grained scale factor. Further, the heart rate of mice was not necessarily associated with the nonlinear complexity of cardiac dynamics, but closely related to the most sensitive ECG frequency scope determined by characterization of this complex dynamic features for certain heartbeat conditions. Finally, we found that the health status of the hearts of mice was directly related to the heartbeat dynamic complexity, both of which were positively correlated within the scale factor around the extremum region of the multifractal parameter. With increasing heart rate, the sensitive frequency scope increased to a relatively high location. In conclusion, these data provide important theoretical and practical data for the early diagnosis of cardiac disorders.  相似文献   

2.
This study was designed to examine the changes of the isolated frog's heart rate as a function of the time in the two time intervals: 20-95 min and 95-170 min after hearts were prepared. The heart rate decreased in these intervals quite linear but average slope between 20-75 min was significantly steeper than in the time interval 95-170 min. It was shown that the difference in the heart rate response induced by the increasing temperature in intact animals and isolated hearts partly might be explored by this decrease in the isolated frog's heart rate with time.  相似文献   

3.
Fesenko  E. E.  Gagarinsky  E. L.  Averin  A. S.  Grudinin  N. V.  Gurin  A. E.  Shishova  N. V.  Shvirst  N. E.  Goltyaev  M. V.  Kovtun  A. L. 《Biophysics》2020,65(4):666-675

High organoprotective properties of a carbon monoxide (CO)–oxygen (O2) gas mixture were confirmed after prolonged (24-h) preservation of the papillary muscle and an isolated rat heart at 4°C. Hypothermic preservation in the high-pressure gas mixture (6 atm) provided efficient restoration of the contractile activity of the isolated rat heart after 24-h storage at 4°C. The isolated retrograde-perfused Langendorff heart performed physically relevant mechanical work, which was similar in duration to that of an intact control heart. Staining with triphenyltetrazolium chloride did not detect infarcted regions in the myocardium. After preservation, the heart tissue was highly capable of performing its function in a test for electrically stimulated contractile activity of papillary muscles. In the test group, The frequency–intensity relationship, the potentiation effect induced by a pause, and the response to stimulation with isoproterenol of test hearts generally corresponded to the parameters of a normal rat myocardium. A sheep heart, which is comparable in size and weight to a human heart, was for the first time successfully preserved using the gas mixture. Normal heartbeat was spontaneously restored after the start of perfusion in all experiments. Histology did not detect a significant difference between test and control sheep hearts. The normal tissue structure of the myocardium was preserved in the test hearts. The 24-h preservation achieved in the study was four times longer than the maximum allowable preservation time of standard static cold storage. The results obtained with the large laboratory animal heart model showed that the hypothermic preservation protocol is promising for prolonged storage of human hearts.

  相似文献   

4.
This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to the modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.  相似文献   

5.
In the rat heart the actin-bound nucleotide contained both ATP and ADP. The ratio of bound ATP to bound ADP depended on the functional state of the heart; it was higher in hearts stopped reversibly in diastole (low Ca(2+), high Mg(2+), or high K(+)), than in stimulated (inotropic agents or pacing) hearts. Immunoblotting and gel electrophoresis showed the existence of G-actin (30% of total actin) in the cytoplasm of the heart. Pure actin was isolated from rat hearts: in G-actin the bound nucleotide readily exchanged with ATP or ADP, and in F-actin the bound nucleotide did not exchange with ATP or ADP. The free and bound nucleotides were separated in the intact heart by extraction with 75% methanol at -15 degrees C. In rat hearts perfused with (32)P-labeled orthophosphate the actin-bound nucleotide rapidly exchanged with the cytoplasmic ATP. The full exchange of the bound ATP was immediate, whereas the full exchange of the bound ADP was slower. The full exchange of the bound ATP was independent of the heartbeat frequency, whereas the full exchange of the bound ADP was frequency dependent. The data suggest that the transformation of actin monomer-ATP to actin polymer-ADP is a part of the normal contraction-relaxation cycle of the rat heart.  相似文献   

6.
The axolotl, Ambystoma mexicanum, is a useful system for studying embryogenesis and cardiogenesis. To understand the role of protein tyrosine phosphorylation during heart development in normal and cardiac mutant axolotl embryonic hearts, we have investigated the state of protein tyrosine residues (phosphotyrosine, P-Tyr) and the relationship between P-Tyr and the development of organized sarcomeric myofibrils by using confocal microscopy, two-dimensional isoelectric focusing (IEF)/SDS-polyacrylamide gel electrophoresis (PAGE) and immunoblotting analyses. Western blot analyses of normal embryonic hearts indicate that several proteins were significantly tyrosine phosphorylated after the initial heartbeat stage (stage 35). Mutant hearts at stages 40-41 showed less tyrosine phosphorylated staining as compared to the normal group. Two-dimensional gel electrophoresis revealed that most of the proteins from mutant hearts had a lower content of phosphorylated amino acids. Confocal microscopy of stage 35 normal hearts using phosphotyrosine monoclonal antibodies demonstrated that P-Tyr staining gradually increased being localized primarily at cell-cell boundaries and cell-extracellular matrix boundaries. In contrast, mutant embryonic hearts showed a marked decrease in the level of P-Tyr staining, especially at sites of cell-cell and cell-matrix junctions. We also delivered an anti-phosphotyrosine antibody (PY 20) into normal hearts by using a liposome-mediated delivery method, which resulted in a disruption of the existing cardiac myofibrils and reduced heartbeat rates. Our results suggest that protein tyrosine phosphorylation is critical during myofibrillogenesis and embryonic heart development in axolotls.  相似文献   

7.
A new behavioral assay is described for studying chemosensation in the nematode Caenorhabditis elegans. This assay presents three main characteristics: (1) the worm is restrained by gluing, preserving correlates of identifiable behaviors; (2) the amplitude and time course of the stimulus are controlled by the experimenter; and (3) the behavior is recorded quantitatively. We show that restrained C. elegans display behaviors comparable to those of freely moving worms. Moreover, the chemosensory response of wild-type glued animals to changes in salt concentration is similar to that of freely moving animals. This glued-worm assay was used to reveal new chemosensory deficits of the potassium channel mutant egl-2. We conclude that the glued worm assay can be used to study the chemosensory regulation of C. elegans behavior and how it is affected by neuronal or genetic manipulations.  相似文献   

8.
The effects of ribose on the pre- and post-ischaemic functional performance of the isolated working heart from 24 month old chronically alcoholic animals was investigated. The improved perfusion model permitted the isolated heart to perform work analogous to that of the normal physiological load, in a system where systemic pressure and atrial pressure could be altered over a wide range and oxygen loss from the perfusion fluid was a minimum. There was a remarkable improvement in the performance of isolated hearts taken from alcoholic animals that were perfused with 1.7 mM ribose both before and after a 25.0 min period of global myocardial ischaemia (at 25 degrees C), however ribose treatment did not greatly affect the performance of hearts of isocaloric control aged rats. Chronic alcohol consumption significantly affected heart performance, causing a marked reduction in both cardiac and work output. After ischaemia the work of all hearts was notably decreased; there was no work output in untreated hearts of alcoholic animals, whereas in hearts of alcoholic animals treated with ribose work output was only decreased by 35%. The acute response to ribose by hearts of aged chronically alcoholic animals suggests a role for this compound as a positive inotropic agent and clearly indicates the beneficial potential of ribose for inclusion in cardioplegic solutions or for infusion in alcoholic subjects showing signs of heart failure or chronic heart disease.  相似文献   

9.
Heartbeat in Panulirus japonicus acclimated to 20°C is often augmented during cooling to 15oC. Augmented contractions of the heart coincided with increasing amplitude of electrocardiogram. In cold saline, a pericardial hormone serotonin (10−7 M) increased both the amplitude and duration of the heartbeat while another hormone octopamine (10−6 M) slightly relieved the cold depression of heart rate despite a smaller increase in beat amplitude. In contrast, the application of the cold saline containing F1 (a FMRFamide-related peptide of pericardial hormones, 10−9 M) maintained the rate and amplitude of the heartbeat around the control level during cold exposure. This suggests that in the presence of F1, the lobster heart becomes cold resistant clearly. We previously reported that the pericardial organs of spiny lobsters are activated by a small fall in body temperature. The ligamental nerves, extensions of the pericardial organs, terminate in the heart beside the ostia and their ends remain in the isolated hearts. Therefore, the ligamental nerve ends might release their hormones into the ventricle with the fall in temperature even in the isolated hearts.  相似文献   

10.
A new behavioral assay is described for studying chemosensation in the nematode Caenorhabditis elegans. This assay presents three main characteristics: (1) the worm is restrained by gluing, preserving correlates of identifiable behaviors; (2) the amplitude and time course of the stimulus are controlled by the experimenter; and (3) the behavior is recorded quantitatively. We show that restrained C. elegans display behaviors comparable to those of freely moving worms. Moreover, the chemosensory response of wild‐type glued animals to changes in salt concentration is similar to that of freely moving animals. This glued‐worm assay was used to reveal new chemosensory deficits of the potassium channel mutant egl‐2. We conclude that the glued worm assay can be used to study the chemosensory regulation of C. elegans behavior and how it is affected by neuronal or genetic manipulations. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

11.
The decapod crustacean heartbeat is initiated by the cardiac ganglion and is regulated by a variety of neuronal and hormonal inputs. In this paper we examine the effects of the peptide hormone proctolin which appears to have multiple sites of action in the shore crab, Carcinus maenas. To examine some of the potential sites of proctolin action we used three heart preparations: in situ intact and open hearts, and isolated hearts. We provide evidence in support of the hypothesis that proctolin affects cardiac activity at many levels. It acts at the cardiac ganglion to modulate burst rate and at the myocardium to alter contractile force. We calculated the relationship between contractility and ganglionic output of in situ hearts as the ratio of ventricular pressure or tension to amplitude of the electromyogram or intracellular excitatory junction potential. Large proctolin-induced changes in this ratio, which could not be accounted for by ganglionic output, membrane potential or input resistance suggest direct action on the myocardium. The greater increases in ventricular pressure than in tension in the in situ hearts may reflect proctolin-induced contraction of the cardioarterial valves. Finally, proctolin can possibly influence heart rate by action on the cardioregulatory nerves of the central nervous system. Accepted: 11 May 1998  相似文献   

12.
The response of rat and guinea-pig hearts to ischemia and reperfusion has been studied in identical conditions. Total 15-min ischemia of isolated rat hearts at 36 degrees C induced an almost 3-fold rise in isovolumic left ventricular diastolic pressure as well as a fall in the developed pressure and heart rate. Guinea-pig hearts, in the same conditions, exhibited a more steep fall in heart rate, with no rise in diastolic pressure. With constant heart rate produced by electrical stimulation at 4 Hz, the difference between two groups remained unchanged, while a more rapid fall in developed pressure in guinea-pig hearts coincided with a more profound fall in extracellular pH and almost a 2-fold rise in extracellular K+ activity. Rapid elimination of K+ and H+ at the early stages of reperfusion was followed by fibrillation in the majority of guinea-pig hearts, while no fibrillation was observed in rat hearts.  相似文献   

13.
In isolated rat hearts perfused with HEPES and red blood cell-enriched buffers, we examined changes in left ventricular pressure induced by increases in heart rate or infusion of adenosine to investigate whether the negative force-frequency relation and the positive inotropic effect of adenosine are related to an inadequate oxygen supply provided by crystalloid perfusates. Hearts perfused with HEPES buffer at a constant flow demonstrated a negative force-frequency relation, whereas hearts perfused with red blood cell-enriched buffer exhibited a positive force-frequency relation. In contrast, HEPES buffer-perfused hearts showed a concentration-dependent increase in left ventricular systolic pressure [EC50 = 7.0 +/- 1.2 nM, maximal effect (Emax) = 104 +/- 2 and 84 +/- 2 mmHg at 0.1 microM and baseline, respectively] in response to adenosine, whereas hearts perfused with red blood cell-enriched buffer showed no change in left ventricular pressure. The positive inotropic effect of adenosine correlated with the simultaneous reduction in heart rate (r = 0.67, P < 0.01; EC50 = 3.8 +/- 1.4 nM, baseline 228 +/- 21 beats/min to a minimum of 183 +/- 22 beats/min at 0.1 microM) and was abolished in isolated hearts paced to suppress the adenosine-induced bradycardia. In conclusion, these results indicate that the negative force-frequency relation and the positive inotropic effect of adenosine in the isolated rat heart are related to myocardial hypoxia, rather than functional peculiarities of the rat heart.  相似文献   

14.
The acute dose-dependent effects of epinephrine and cocaine on heart rate and coronary flow rate (CFR) were examined in isolated, perfused (Langendorff) rat hearts from animals: i) pretreated with daily cocaine injections (20 mg/kg/day) for 8 weeks; ii) after 2-day withdrawal from 8-week cocaine pretreatment; iii) vehicle-treated controls. Chronic cocaine (CC) hearts were significantly less sensitive to the chronotropic effects of epinephrine than control (C) or withdrawal (CW) hearts. CW hearts exhibited significantly higher heart rates in response to epinephrine than C and CC hearts. Epinephrine alone (2.5 x 10(-7) M) decreased CFR 11% (C), 9%(CC), 14%(CW) from respective baseline levels. Cocaine alone had no significant effect on CFR in C hearts but produced slight dose-dependent decrements in CFR in CC and particularly CW hearts at higher doses. Cocaine plus epinephrine markedly decreased CFR in all groups, particularly in CW hearts. The results indicate that chronic daily cocaine administration produces a functional tolerance of the heart to the chronotropic actions of epinephrine but a 2-day withdrawal from chronic cocaine results in a rebound supersensitivity to adrenergic stimulation and cocaine's sympathomimetic effects. In addition, cocaine produces only minor decrements in coronary flow in the rat heart, while cocaine acts synergisticallly with epinephrine to produce a marked decrease in CFR.  相似文献   

15.
Pulsations of the dorsal vessel were recorded in vivo during the whole postembryonic development of D. melanogaster, by means of a newly invented, pulse-light opto-cardiographic method. The young larvae of the 1st and 2nd instars submerged in the feeding medium exhibited extremely high rates of heartbeat, 7Hz at room temperature. These values are among the highest rates of heartbeat ever recorded in the animal kingdom. The fully grown larvae of the 3rd instar showed approximately half of the maximum heartbeat rate (3.5-4Hz), which became stabilized after pupariation to 2.5-2.7Hz.The larval heartbeat was always uni-directional, in the forward-oriented or anterograde direction and it was almost continuous. The slowly disintegrating, old larval heart used to beat at the constant frequency of 2.5-2.7Hz until complete cessation of all cardiac functions in 1-day-old puparium. In spite of the persisting constant heartbeat frequency, the transformation process of the larval heart was associated with successively decreasing amplitude of the systolic contractions and with the prolongation of the resting periods. The newly formed heart of the pupal-adult structure exhibited a qualitatively new pattern of heartbeat activity, which was manifested by periodic reversal of the heartbeat with the faster anterograde and slower retrograde phases. The frequencies of both of these reciprocal cardiac pulsations gradually increased during the advanced pharate adult period, reaching the values of 4-5Hz at the time of adult eclosion. Adult males and females also exhibited a perfect pattern of heartbeat reversal, with still very high rates of the anterograde heartbeat, in the range of 5-6Hz. In addition to the cardiac functions, we have recorded several kinds of extracardiac pulsations, which often interfered severely with the recordings of the heartbeat. There were strong, irregular extracardiac pulsations of a neurogenic nature (somatic muscles, oral armature) and relatively slow extracardiac pulsations of a myogenic nature (intestinal peristaltics, 0.2-0.3Hz). The extracardiac and cardiac pulsations were independent, their functions were not correlated. A possibility of creating new challenges in combination of molecular biology with the functional physiology of the heart have been discussed.  相似文献   

16.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

17.
Employing the Drosophila heart, a model system for genetic and molecular investigation of cardiac physiology, we demonstrate here an essential role for the protein dynamin, encoded by the Drosophila gene shibire(ts) (shi(ts)), in maintaining normal heart function. In flies bearing two temperature-sensitive alleles of shi, shi(ts1) and shi(ts2), heartbeat is both slower and less rhythmic than in wild-type animals. Serotonin and norepinephrine, normally cardioacceleratory in wild type, are without effect in flies bearing the shi mutation. Electrocardiogram (EKG) analysis reveals a bigeminal beat in mutant hearts, unlike the single electrical pulse in wild-type. The gene no action potential (temperature sensitive), with previously-described cardiac aberrations similar to those of shi, interacts with shi: shi/shi;nap/nap mutants have almost wild-type heart function. J. Exp. Zool. 289:81-89, 2001.  相似文献   

18.
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts.  相似文献   

19.
SYNOPSIS. Hearts of embryonic axolotls (Ambystoma mexicanum)homozygous for gene c do not beat in situ. Under appropriateculture conditions they rapidly commence beating, albeit lessvigorously than similarly explanted hearts of comparably stagednormal siblings. As part of this symposium, we have shown acine record demonstrating heartbeat in mutant hearts and comparingit to normal heartbeat. Myocardia of normal embryos exhibita characteristic pattern of birefringent, striated myofibrils.Mutants of the same stage contain hearts with birefringent fibrilsorganized in a pattern similar to that found in normal myocardia.A striking difference is that obvious striations are lackingin fibrils of the mutant. Electrophoresis of normal and mutanthearts in SDS-polyacrylamide gels shows that the major myofibrillarproteins are present. We conclude that induction of c/c heartshas been relatively normal and suggest that, due to the rapidityof recovery, the observed phenomena are perhaps due to somethingas simple as a defect in ionic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号