首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concanavalin A (ConA) is a well characterized and extensively used lectin accumulated in the protein bodies of jack bean cotyledons. ConA is synthesized as an inactive precursor proConA. The maturation of inactive proConA into biologically active ConA is a complex process including the removal of an internal glycopeptide and a C-terminal propeptide (CTPP), followed by a head-to-tail ligation of the two largest polypeptides. The cDNA encoding proConA was cloned and expressed in tobacco BY-2 cells. ProConA was slowly transported to the vacuole where its maturation into ConA was similar to that in jack bean cotyledons, apart from an incomplete final ligation. To investigate the role of the nine amino acid CTPP, a truncated form lacking the propeptide (proConADelta9) was expressed in BY-2 cells. In contrast to proConA, proConADelta9 was rapidly chased out of the endoplasmic reticulum (ER) and secreted into the culture medium. The CTPP was then fused to the C-terminal end of a secreted form of green fluorescent protein (secGFP). When expressed in tobacco BY-2 cells and leaf protoplasts, the chimaeric protein was located in the vacuole whereas secGFP was located in the culture medium and in the vacuole. Altogether, our results show we have isolated a new C-terminal vacuolar sorting determinant.  相似文献   

2.
A major molecular species of concanavalin A (Con A), a mitogenic lectin from jack bean seeds, has a quaternary structure composed of four homologous subunits and a tetravalent sugar-binding ability. We show that the tetrameric Con A can be converted into a monovalent monomeric form by either photochemical alkylation or hydrogen peroxide/dioxane oxidation of about two tryptophan residues. A divalent dimeric derivative of Con A is also prepared by sulfomethylamidation of about four carboxyl groups. Chemical properties and mitogenic and hemagglutinating activities of these new Con A derivates are compared with those of the tetravalent Con A, as well as of the Con A derivatives that have appeared in the literature on cell biological studies. The significance of the lectin valences in lymphocyte activation and hemagglutination is also discussed.  相似文献   

3.
Succinylated concanavalin A (ConA), a non-toxic, non-agglutinating derivative of the jack bean lectin ConA inhibits the growth of both normal and SV40-transformed 3T3 cells. The quantitative but not the qualitative growth inhibitory effect of succinyl-ConA can be modulated by the composition of the growth medium. Succinyl-ConA inhibited cells show a low rate of DNA synthesis and accumulate in the G0/G1 phase of the cell cycle. Upon removal of the succinyl-ConA, inhibited cells re-enter the cell cycle synchronously.  相似文献   

4.
Concanavalin A (ConA) is a tetrameric lectin which is synthesized in the developing cotyledons of jack bean (Canavalia ensiformis L.) as a glycosylated precursor, pro-concanavalin A (pro-ConA). The processing of pro-ConA involves the excision of a small glycopeptide from the center of the pro-ConA molecule, and the ligation of the two polypeptides. In this paper, we show that pro-ConA is associated with the endoplasmic reticulum/Golgi fraction of the cells, and that the processing of pro-ConA occurs in the protein bodies. Processing is a complex process and different intermediate-sized polypeptides appear at different times during cotyledon development. The ConA-related polypeptides which accumulate during seed development may be the products of alternate processing events or breakdown products of ConA, rather than precursors of ConA. When glycosylation is prevented by tunicamycin, there is very little transport of pro-ConA out of the endoplasmic reticulum/Golgi system to the protein bodies; the unglycosylated pro-ConA which is transported is slowly processed. Tunicamycin does not prevent the transport of canavalin (a protein which is not glycosylated) or the transport and processing of the small amounts of glycosylated pro-ConA synthesized in the presence of the drug. This is, to our knowledge, the first demonstration that the transport of a glycoprotein in plant cells is dependent on the presence of the glycan.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - GlcN glucosamine - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported by a grant from NATO  相似文献   

5.
Insights into the role and structure of plant ureases   总被引:1,自引:0,他引:1  
The broad distribution of ureases in leguminous seeds, as well as the accumulation pattern of the protein during seed maturation, are suggestive of an important physiological role for this enzyme. Since the isolation and characterization of jack bean urease by Sumner in 1926, many investigations have been dedicated to the structural and biological features of this enzyme; nevertheless, many questions still remain. It has been reported that ureases from plants (jack bean and soybean seeds) display biological properties unrelated to their ureolytic activity, notably a high insecticidal activity against Coleoptera (beetles) and Hemiptera (bugs), suggesting that ureases might be involved in plant defense. Besides the insecticidal activity, canatoxin, a jack bean urease isoform, causes convulsions and death in mice and rats, induces indirect hemagglutination (hemilectin activity) and promotes exocytosis in several cell types. Not only plant ureases but also some microbial ureases (found in Bacillus pasteurii and Helicobacter pylori) are able to induce activation of platelets in a process mediated by lipoxygenase-derived metabolites. This review summarizes the biological and structural properties of plant ureases, compares them with those displayed by bacterial ureases, and discusses the significance of these findings.  相似文献   

6.
The jack bean lectin concanavalin A (ConA) and the Dioclea grandiflora lectin (DGL) are highly homologous Man/Glc-specific members of the Diocleinae subtribe. Both lectins bind, cross-link, and precipitate with carbohydrates possessing multiple terminal nonreducing Man residues. The present study investigates the binding and cross-linking interactions of ConA and DGL with a series of synthetic divalent carbohydrates that possess spacer groups with increasing flexibility and length between terminal alpha-mannopyranoside residues. Isothermal titration microcalorimetry was used to determine the thermodynamics of binding of the two lectins to the divalent analogs, and kinetic light scattering and electron microscopy studies were used to characterize the cross-linking interactions of the lectins with the carbohydrates. The results demonstrated that divalent analogs with flexible spacer groups between the two terminal Man residues possess higher affinities for the two lectins as compared with those with inflexible spacer groups. Furthermore, despite their high degree of homology, ConA and DGL exhibit differences in their kinetics of cross-linking and precipitation with the divalent analogs. Electron microscopy shows the loss of organized cross-linked lattices of the two lectins with analogs possessing increased distance between the terminal Man residues. The loss of lattice patterns with the analogs is distinct for each lectin. These results have important implications for the interactions of lectins with multivalent carbohydrate receptors in biological systems.  相似文献   

7.
Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.

Revisiting the historically important plant protein concanavalin A and reconstituting its biosynthesis in vitro reveals the advantages of its unusual biosynthesis via circular permutation.  相似文献   

8.
Concanavalin A and a mannose-specific lectin could be precipitated specifically from extracts of jack bean and Cajanus cajan seeds, respectively, using metal charged EGTA. Single step purification of the lectins was also possible using iminodiacetic acid-Sepharose charged with metal ions. Nondenaturing electrophoresis in polyacrylamide gel and that performed in presence of SDS ascertained homogeneity of the isolated lectins. The migration behavior of the purified lectins was comparable with those of the lectins purified using alternative procedures.  相似文献   

9.
Lectins are a class of proteins with specific carbohydrate-binding properties found in a wide variety of plants and animals. Gramineae lectins are presumably defense-related proteins in plants that exert their effect by binding to N-acetylglucosamine. Barley lectin is a vacuolar protein synthesized with an amino-terminal signal sequence for entering the secretory pathway and a carboxyl-terminal propeptide necessary for proper targeting to the vacuole. To analyze the three-dimensional structure of barley lectin with the carboxyl-terminal extension and to investigate whether the conversion of the prolectin into the mature molecule leads to a conformational change, the precursor and the mature forms of barley lectin were expressed in Escherichia coli. Both proteins accumulated in denatured form in inclusion bodies were solubilized in 8 M urea and renatured in a redox buffer system. Active pro- and mature barley lectins were purified to homogeneity by affinity chromatography.  相似文献   

10.
Summary Metabolic labelling of immature jackbeans (Canavalia ensiformis) has been used in a pulse-chase study to determine changes in the glycosylation pattern of polypeptides during the assembly of Concanavalin A. In an analysis that allowed the identification of 7 intermediates, only the first precursor form of the lectin was labelled with D-[U-14C]-glucosamine. These results indicate that processing of the lectin involves a novel deglycosylation event in which an N-linked oligosaccharide is removed from a protein in the absence of proteolysis.Abbreviations endo H endo -N-acetylglucosaminidase H - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - ConA Concanavalin A  相似文献   

11.
Protein from the jack bean, peanut, soybean and kidney bean seeds were extracted with a solution containing 9.3 molar urea, 5 millimolar K2CO3, 0.5% dithiothreitol and 2% Nonidet P-40 and then subjected to two-dimensional gel electrophoresis. After electrophoresis, the slab gels were stained with a variety of 125I-labeled lectins and the lectin-binding proteins were identified after autoradiography. Incubation of slab gels of jack bean with concanavalin A, peanut with peanut agglutinin, soybean with soybean agglutinin, and kidney bean with phytohemagglutinin showed that the majority of the polypeptides in each seed type were able to bind to their homologous lectins. Control slab gels in which incubations were carried out with identical amounts of proteins, 125I-lectin and an appropriate sugar inhibitor showed little or no lectin binding to the polypeptides. Additionally, incubation of slab gels of peanut proteins with 125I-ricin, 125I-wheat germ agglutinin, 125I-concanavalin A, and 125I-soybean agglutinin each revealed a clearly distinct binding pattern compared to the one observed with the peanut agglutinin. The results demonstrate that a large number of legume seed polypeptides are glycoproteins and that the carbohydrate groups within a seed species are heterogeneous in structure, thus indicating the existence of complex glycosylating enzyme systems in legume seeds. It is suggested that the high degree of binding between seed proteins and their homologous lectins might have some functional significance in maintaining large aggregates of protein in compact, insoluble form.  相似文献   

12.
In the self sterile ascidian, Ciona intestinalis , the spermatozoa rarely bind to the vitelline coat of autologous eggs and never penetrate it. We report here that concanavalin A (ConA), a lectin recognizing mannose or glucose residues of carbohydrates, can modify these self- and nonself-specific sperm-egg interactions. When eggs were pretreated with 0.1–0.5 mg/ml of ConA, about two thousand spermatozoa became attached to the autologous vitelline coat within five minutes of insemination. The effect of ConA was not modified by the addition of D-mannose or pretreatment of spermatozoa with ConA, showing that ConA does not function merely as a ligand bridging the sperm and vitelline coat. In contrast to the marked enhancement of sperm-egg binding, ConA did not facilitate the penetration of spermatozoa through the autologous vitelline coat. Even in non-autologous insemination, it blocked the sperm penetration and, consequently, fertilization did not occur, as shown by Rosati et al. (1978). D-Mannose, when mixed with ConA in advance, completely abolished this inhibitory effect of ConA. Lotus agglutinin, a fucose-binding lectin, was less effective and wheat germ agglutinin and soy bean agglutinin had no effect on sperm entry in the perivitelline space. The results of this study are discussed in relation to the possible involvement of mannosyl and/or glucosyl glycoconjugates in allo-specific sperm-egg interactions.  相似文献   

13.
Two isolectins were isolated from leaves of winged bean andcharacterized. They differed from each other in terms of theirimmunological properties, hemagglutinating activities, sugarinhibition patterns, and amino acid compositions. Both lectinswere acidic and one of them (L-I), which was inactive towardtrypsinized human type O erythrocytes, was similar to one ofgreen shell lectins (WGS-1); which resembled basic seed lectinin its immunological properties. The amino-terminal sequenceof L-I was homologous to that of WGS-1. The amino acid compositionof L-I was similar to that of basic seed lectin, but the extentof the homology between amino-terminal sequences was low whenL-I and basic seed lectin were compared. Examination by ELISArevealed that L-I and WGS-1 were distinct from the basic lectinsof seeds and tuberous roots. L-I had a disulfide bridge betweentwo subunits and it exhibited high hemagglutinating activitytoward human type A erythrocytes, as compared to its activitytoward other erythrocytes. By contrast, the properties of asecond acidic lectin from winged bean leaves (L-II) were verysimilar to those of acidic lectins from seeds and tuberous roots,and the similarities extended as far as the immunological properties. (Received January 6, 1994; Accepted August 15, 1994)  相似文献   

14.
Extracts of seeds of 21 bean cultivars were screened for hemagglutinating specifity and for mitogenic activity. Four types could be distinguished in different beans, two of which are mitogens. Two lectin fractions (α and β) were isolated from each of the four bean types. Their MW were estimated by exclusion chromatography and component sugars by paper chromatography. Hemagglutinating activity, inhibition of hemagglutinating action by sugar-derivatives and glyco-peptides as well as mitogenic action were determined for the eight purified lectins and four control preparations. The α and β-fractions isolated from two bean types had only minimal mitogenic action, while those from the other two bean types and all of the control preparations were potent mitogens. All the mitogeric preparations agglutinated trypsin-activated cow red blood cells and pronase-activated hamster red blood cells in high dilutions but some were inactive when tested with human or rabbit red blood cells.  相似文献   

15.
The proteolysis of trypsin inhibitors in legume seeds   总被引:1,自引:0,他引:1  
The seeds of plants often contain large amounts of proteins, which are subjected to extensive proteolytic processing during seed development and subsequent germination. One class of legume seed proteins, the Bowman-Birk-type trypsin inhibitors, has proved especially useful as a subject in studying these events. Sequence studies of the trypsin inhibitors from a number of legume species suggest that many of the inhibitors undergo a limited shortening at the amino terminus during seed development. However, during germination, the inhibitors appear to function as storage proteins. As such, they are subjected to extensive proteolysis, ultimately leading to their destruction. This degradative process has been studied extensively in the mung bean (Vigna radiata [L.] Wilczek). Proteolysis of the mung bean trypsin inhibitor involves, at least initially, an ordered sequence of limited proteolytic cleavages. The two proteases involved in the initial phases of this degradation have been identified and partially characterized.  相似文献   

16.
17.
O'neal TD 《Plant physiology》1975,55(6):975-977
An enzyme was extensively purified from jack bean leaves (Canavalia ensiformis L.) which produced o-ureidohomoserine from l-canaline and carbamyl phosphate. The most highly purified preparations catalyzed both this reaction and citrulline synthesis from ornithine and carbamyl phosphate, and the ratio of the two activities remained nearly constant during purification. When hydrated jack bean seeds were the enzyme source, ornithine carbamyltransferase (EC 2.1.3.3) activity was high but synthesis of ureidohomoserine was barely detectable. Both ornithine carbamyltransferase and the ureidohomoserine synthesizing enzyme had similar Km values for carbamyl phosphate. The purification data suggest that one enzyme may catalyze both reactions in jack bean leaves.  相似文献   

18.
Affinity labeling of the rat pancreatic cholecystokinin (CCK) receptor with decapeptide probes has identified an Mr = 85,000-95,000 protein, distinct from the Mr = 80,000 component previously labeled with 125I-Bolton Hunter-CCK-33. We have characterized the carbohydrate composition of this novel protein labeled with 125I-D-Tyr-Gly-[(Nle28,31)-CCK-26-33] and disuccinimidyl suberate by using chemical and enzymatic deglycosylation and lectin chromatography. The Mr = 85,000-95,000 component was demonstrated to be an N-linked sialoglycoprotein based on neuraminidase digestion to Mr = 75,000-85,000 and endo-beta-N-acetylglucosaminidase F (Endo F) digestion to Mr = 42,000. This was distinct from the Mr = 65,000 product of Endo F digestion of the protein labeled with 125I-Bolton Hunter-CCK-33. Lack of an effect of endo-beta-N-acetylglucosaminidase H demonstrated the absence of N-linked simple oligosaccharides, while products of chemical deglycosylation with hydrogen fluoride and endo-alpha-N-acetylgalactosaminidase supported the absence of O-linked carbohydrate. The presence of at least four oligosaccharide chains on the core protein was suggested by Endo F digestion of the Mr = 85,000-95,000 protein using limiting enzyme conditions. This glycoprotein was retained on wheat germ agglutininagarose and eluted by N,N',N"-triacetylchitotriose. Identification of the Mr = 85,000-95,000 component on the ectodomain of the plasmalemma of intact pancreatic acini confirmed this to be the fully processed form of the CCK-binding protein.  相似文献   

19.
《Developmental biology》1986,114(2):347-360
Ionophore A23187 and electrical activation of dejellied mature eggs of Xenopus laevis are both prevented by the lectins wheat germ agglutinin (WGA) and soya bean agglutinin (SBA). However, this inhibition is not total since one of the events associated with egg activation, the activation potential, still occurs under lectin treatment. After 10 min of incubation in 50 μg/ml WGA or 100 μg/ml SBA, the cortical reaction, cortical contraction, and second polar body emission are totally impaired, whereas the activation potential, although different from the normal one, still proceeds. At the ultrastructural level, the lectin binding sites are localized on the vitelline envelope and on the plasma membrane. The inhibitory effects of these lectins are not detected in jellied eggs. Also, spermatozoa are strongly agglutinated by WGA at concentrations as low as 2.5 μg/ml, but not by SBA. This suggests that inhibition of fertilization in WGA-treated eggs is due to an effect of the lectin on the sperm.  相似文献   

20.
Glycoproteins present in the soluble and organelle fractions of developing bean (Phaseolus vulgaris) cotyledons were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, affinoblotting, fractionation on immobilized concanavalin A (ConA), and digestion of the oligosaccharide side chains with specific glycosidases before and after protein denaturation. These studies led to the following observations. (a) Bean cotyledons contain a large variety of glycoproteins that bind to ConA. Binding to ConA can be eliminated by prior digestion of denatured proteins with α-mannosidase or endoglycosidase H, indicating that binding to ConA is mediated by high-mannose oligosaccharide side chains. (b) Bean cotyledons contain a large variety of fucosylated glycoproteins which bind to ConA. Because fucose-containing oligosaccharide side chains do not bind to ConA, such proteins must have both high-mannose and modified oligosaccharides. (c) For all the glycoproteins examined except one, the high-mannose oligosaccharides on the undenatured proteins are accessible to ConA and partially accessible to jack bean α-mannosidase. (d) Treatment of the native proteins with α-mannosidase removes only 1 or 2 mannose residues from the high-mannose oligosaccharides. Similar treatments of sodium dodecyl sulfate-denatured or pronase-digested glycoproteins removes all α-mannose residues. The results support the following conclusions: certain side chains remain unmodified as high-mannose oligosaccharides even though the proteins to which they are attached pass through the Golgi apparatus, where other oligosaccharide chains are modified. The chains remain unmodified because they are not accessible to processing enzymes such as the Golgilocalized α-mannosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号