首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibody 2E8 is specific for an epitope that coincides with the binding site of the low density lipoprotein receptor (LDLR) on human apoE. Its reactivity with apoE variants resembles that of the LDLR: it binds well with apoE3 and poorly with apoE2. The heavy chain complementarity-determining region (CDRH) 2 of 2E8 shows homology to the ligand-binding domain of the LDLR. To define better the structural basis of the 2E8/apoE interaction and particularly the role of electrostatic interactions, we generated and characterized a panel of 2E8 variants. Replacement of acidic residues in the 2E8 CDRHs showed that Asp(52), Glu(53), and Asp(56) are essential for high-affinity binding. Although Asp(31) (CDRH1), Glu(58) (CDRH2), and Asp(97) (CDRH3) did not appear to be critical, the Asp(97) --> Ala variant acquired reactivity with apoE2. A Thr(57) --> Glu substitution increased affinity for both apoE3 and apoE2. The affinities of wild-type 2E8 and variants for apoE varied inversely with ionic strength, suggesting that electrostatic forces contribute to both antigen binding and isoform specificity. We propose a model of the 2E8.apoE immune complex that is based on the 2E8 and apoE crystal structures and that is consistent with the apoE-binding properties of wild-type 2E8 and its variants. Given the similarity between the LDLR and 2E8 in terms of specificity, the LDLR/ligand interaction may also have an important electrostatic component.  相似文献   

2.
3.
The receptor-mediated uptake of major yolk protein precursor, vitellogenin (Vg) is crucial for oocyte growth in egg laying animals. In the present study plasma membrane receptor for Vg was isolated from the oocyte of the red mud crab, Scylla serrata. Vitellogenin receptor (VgR) protein was visualized by ligand blotting using labeled crab Vg ((125)I-Vg) as well as labeled low density lipoprotein ((125)I -LDL) and very low density lipoprotein ((125)I-VLDL) isolated from rat. The endocytosis of Vg was visualized in the crab oocyte by ultrastructural immunolocalization of Vg. The Vg receptor was purified by gel filtration high performance liquid chromatography (HPLC) and its molecular weight was estimated to be 230 kDa. In direct binding studies, the receptor exhibited high affinity (dissociation constant K(d) 0.8x10(minus sign6) M) for crab Vg. Vitellogenin receptor was observed to have an increased affinity to crab Vg in the presence of Ca(2+) and the binding was inhibited by suramin, suggesting similarities between crab VgR and low density lipoprotein receptor (LDLR) superfamily of receptor protein. Furthermore, the crab VgR showed significant binding ability to mammalian atherogenic lipoproteins such as LDL and VLDL. This suggests that there is a tight conservation of receptor binding sites between invertebrate (crab) Vg and vertebrate (rat) LDL and VLDL.  相似文献   

4.
The low density lipoprotein receptor-related protein (alpha(2)MR/LRP) is a cell surface receptor which is present on most cells and tissues. We show that the 85 kDa subunit, containing the transmembrane region and cytoplasmic domain is phosphorylated in vivo. Comparison of the phosphorylation of the low density lipoprotein receptor (LDLR) with a chimeric receptor containing the cytoplasmic domain of the alpha(2)MR/LRP (LDLR/LRP) showed that phosphorylation is exclusive to the cytoplasmic domain. Staurosporine, a general kinase inhibitor, resulted in a 40% lowering of phosphorylation of LDLR/LRP, but did not give rise to measurable changes in its membrane traffic in MDCK cells. The role of phosphorylation on degradation of the receptor was studied using inhibitors of lysosomal and proteasomal degradation. These studies showed that LDLR/LRP was rapidly turned over by proteasomal degradation but that this turnover was also not a consequence of phosphorylation.  相似文献   

5.
Apolipoprotein (apo)-B-100 is the ligand that mediates the clearance of low density lipoprotein (LDL) from the circulation by the apoB,E (LDL) receptor pathway. Clearance is mediated by the interaction of a domain enriched in basic amino acid residues on apoB-100 with clusters of acidic residues on the apoB,E (LDL) receptor. A model has been proposed for the LDL receptor binding domain of apoB-100 based on the primary amino acid sequence (Knott, T. J., et al. 1986. Nature. 323: 734-738). Two clusters of basic residues (A: 3147-3157 and B: 3359-3367) are apposed on the surface of the LDL particle by a disulfide bridge between Cys 3167 and 3297. Support for this single domain model has been obtained from the mapping of epitopes for anti-apoB monoclonal antibodies that block the binding of apoB to the LDL receptor. Here we test this model by comparing the nucleotide (from 9623 to 10,442) and amino acid sequence (from 3139 to 3411) of apoB-100 in seven species (human, pig, rabbit, rat, Syrian hamster, mouse, and chicken). Overall, this region is highly conserved. Cluster B maintains a strong net positive charge and is homologous across species in both primary and secondary structure. However, the net positive charge of region A is not conserved across these species, but the region remains strongly hydrophilic. The secondary structure of the region between clusters A and B is preserved, but the disulfide bond is unique to the human sequence. This study suggests that the basic region B is primarily involved in the binding of apoB-100 to the apoB,E (LDL) receptor.  相似文献   

6.
Insect vitellogenin and lipophorin receptors (VgRs/LpRs) belong to the low-density lipoprotein receptor (LDLR) gene superfamily and play a critical role in oocyte development by mediating endocytosis of the major yolk protein precursors Vg and Lp, respectively. Precursor Vg and Lp are synthesized, in the majority of insects, extraovarially in the fat body and are internalized by competent oocytes through membrane-bound receptors (i.e., VgRs and LpRs, respectively). Structural analysis reveals that insect VgRs/LpRs and all other LDLR family receptors share a group of five structural domains: clusters of cysteine-rich repeats constituting the ligand-binding domain (LBD), epidermal growth factor (EGF)-precursor homology domain that mediates the acid-dependent dissociation of ligands, an O-linked sugar domain of unknown function, a transmembrane domain anchoring the receptor in the plasma membrane, and a cytoplasmic domain that mediates the clustering of the receptor into the coated pits. The sequence analysis indicates that insect VgRs harbor two LBDs with five repeats in the first and eight repeats in the second domain as compared to LpRs which have a single 8-repeat LBD. Moreover, the cytoplasmic domain of all insect VgRs contains a LI internalization signal instead of the NPXY motif found in LpRs and in the majority of other LDLR family receptors. The exception is that of Solenopsis invicta VgR, which also contains an NPXY motif in addition to LI signal. Cockroach VgRs still harbor another motif, NPTF, which is also believed to be a functional internalization signal. The expression studies clearly demonstrate that insect VgRs are ovary-bound receptors of the LDLR family as compared to LpRs, which are transcribed in a wide range of tissues including ovary, fat body, midgut, brain, testis, Malpighian tubules, and muscles. VgR/LpR mRNA and the protein were detected in the germarium, suggesting that the genes involved in receptor-endocytotic machinery are specifically expressed long before they are functionally required.  相似文献   

7.
The insect low-density lipoprotein (LDL) receptor (LDLR) homolog, lipophorin receptor (LpR), mediates endocytic uptake of the single insect lipoprotein, high-density lipophorin (HDLp), which is structurally related to LDL. However, in contrast to the fate of LDL, which is endocytosed by LDLR, we previously demonstrated that after endocytosis, HDLp is sorted to the endocytic recycling compartment and recycled for re-secretion in a transferrin-like manner. This means that the integrity of the complex between HDLp and LpR is retained under endosomal conditions. Therefore, in this study, the ligand-binding and ligand-dissociation capacities of LpR were investigated by employing a new flow cytometric assay, using LDLR as a control. At pH 5.4, the LpR-HDLp complex remained stable, whereas that of LDLR and LDL dissociated. Hybrid HDLp-binding receptors, containing either the beta-propeller or both the beta-propeller and the hinge region of LDLR, appeared to be unable to release ligand at endosomal pH, revealing that the stability of the complex is imparted by the ligand-binding domain of LpR. The LpR-HDLp complex additionally appeared to be EDTA-resistant, excluding a low Ca(2+) concentration in the endosome as an alternative trigger for complex dissociation. From binding of HDLp to the above hybrid receptors, it was inferred that the stability upon EDTA treatment is confined to LDLR type A (LA) ligand-binding repeats 1-7. Additional (competition) binding experiments indicated that the binding site of LpR for HDLp most likely involves LA-2-7. It is therefore proposed that the remarkable stability of the LpR-HDLp complex is attributable to this binding site. Together, these data indicate that LpR and HDLp travel in complex to the endocytic recycling compartment, which constitutes a key determinant for ligand recycling by LpR.  相似文献   

8.
9.
昆虫卵黄发生的一个重要过程是卵黄蛋白的摄取,已有的研究表明脂肪体合成的卵黄原蛋白(vitellogenin,Vg)是通过受体介导的内吞作用(receptor mediated endocytosis,RME)被正在发育的卵母细胞所摄取。昆虫卵黄原蛋白受体(vitellogenin receptor,VgR)是介导昆虫卵黄原蛋白胞吞作用主要受体,它属于低密度脂蛋白家族,在结构与特性上具低密度脂蛋白家族的共性。卵黄原蛋白及其受体在昆虫生殖过程中起着重要的作用,本文综述了昆虫VgR的基本特性、分子结构及表达调控等方面的研究进展。  相似文献   

10.
Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.  相似文献   

11.
We previously carried out genetic and metabolic studies in a partially inbred herd of pigs carrying cholesterol-elevating mutations. Quantitative pedigree analysis indicated that apolipoprotein (apo)B and a second major gene were responsible for the hypercholesterolemia in these animals. In this study, we assessed LDL receptor function by three different methods: ligand blots of liver membranes using beta-very low density lipoprotein (VLDL) as a ligand; low density lipoprotein (LDL)-dependent proliferation of T-lymphocytes; and direct binding of 125I-labeled LDL to cultured skin fibroblasts. All three methods demonstrated that LDL receptor ligands bound with decreased affinity to the LDL receptor in these animals. In skin fibroblasts from the hypercholesterolemic pigs, the Kd of binding was about 4-fold higher than in cells from normal pigs. The cDNA of the pig LDL receptor from normal and hypercholesterolemic pigs was isolated and sequenced. We identified a missense mutation that results in an Arg'Cys substitution at the position corresponding to Arg94 of the human LDL receptor. The mutation is in the third repeat of the ligand binding domain of the receptor. By single-stranded conformational polymorphism (SSCP) analysis, we studied the relationship between LDL receptor genotype and plasma cholesterol phenotype. In contrast to humans, the hypercholesterolemia associated with the LDL receptor mutation in pigs was expressed as a recessive trait. The LDL receptor mutation made a far more significant contribution to hypercholesterolemia than did the apoB mutation, consistent with observations made in human subjects with apoB mutations. Within each genotypic group (mutated apoB or mutated receptor), there was a wide range in plasma cholesterol. As the animals were on a well-controlled low-fat diet, this suggests that there are additional genetic factors that influence the penetrance of cholesterol-elevating mutations.  相似文献   

12.
家蚕卵黄原蛋白及其受体基因   总被引:4,自引:0,他引:4  
家蚕小卵突变体 (Smalleggmutant ,sm) ,其卵体积仅及正常卵的 2 / 3,不能受精而致死。因其卵母细胞不能正常吸收卵黄原蛋白 (Vg) ,人们认为其原因可能是卵黄原蛋白受体基因 (VgR)突变所致。本研究首先通过克隆筛选和基因组序列分析 ,获得了 2 5 6 4bp含有 ployA的家蚕卵黄原蛋白受体基因 (BmVgR)片段。将该基因片段的预测蛋白与其它物种的VgR/YPR和低密度脂蛋白受体 (LDLR)家族比较 ,发现该基因具有LDLR家族的基本结构特征。其次 ,经RT PCR检测 ,结果表明BmVgR在sm的不同时期的卵母细胞中都能正常转录。最后 ,分别对sm不同发育时期的体液和卵的总蛋白进行SDS PAGE分析 ,发现该突变体的卵母细胞不能正常摄取体液蛋白 (包括Vg)。综合分析 ,sm不能正常摄取Vg ,可能并不是VgR的功能异常导致 ,而是与滤泡细胞异常有关  相似文献   

13.
Apolipoprotein B (apoB) is required for the hepatic assembly and secretion of very low density lipoprotein (VLDL). The LDL receptor (LDLR) promotes post-translational degradation of apoB and thereby reduces VLDL particle secretion. We investigated the trafficking pathways and ligand requirements for the LDLR to promote degradation of apoB. We first tested whether the LDLR drives apoB degradation in an endoplasmic reticulum (ER)-associated pathway. Primary mouse hepatocytes harboring an ethyl-nitrosourea-induced, ER-retained mutant LDLR secreted comparable levels of apoB with LDLR-null hepatocytes, despite reduced secretion from cells expressing the wild-type LDLR. Additionally, treatment of cells with brefeldin A inhibited LDLR-dependent degradation. However, this rescue was reversible, and degradation of apoB occurred upon removal of brefeldin A. To characterize the lipoprotein reuptake pathway of degradation, we employed an LDLR mutant defective in constitutive endocytosis and internalization of apoB. This mutant was as effective in reducing apoB secretion as the wild-type LDLR. However, the effect was dependent on apolipoprotein E (apoE) as only the wild-type LDLR, and not the endocytic mutant, reduced apoB secretion in apoE-null cells. Treatment with heparin rescued a pool of apoB in cells expressing the endocytic mutant, indicating that reuptake of VLDL via apoE still occurs with this mutant. Finally, an LDLR mutant defective in binding apoB but not apoE reduced apoB secretion in an apoE-dependent manner. Together, these data suggest that the LDLR directs apoB to degradation in a post-ER compartment. Furthermore, the reuptake mechanism of degradation occurs via internalization of apoB through a constitutive endocytic pathway and apoE through a ligand-dependent pathway.  相似文献   

14.
15.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

16.
Human apolipoprotein (apo) B-100 is composed of 4536 amino acids. It is thought that the binding of apoB to the low density lipoprotein (LDL) receptor involves an interaction between basic amino acids of the ligand and acidic residues of the receptor. Three alternative models have been proposed to describe this interaction: 1) a single region of apoB is involved in receptor binding; 2) groups of basic amino acids from throughout the apoB primary structure act in concert in apoB receptor binding; and 3) apoB contains multiple independent binding regions. We have found that monoclonal antibodies (Mabs) specific for a region that spans a thrombin cleavage site at apoB residue 3249 (T2/T3 junction) totally blocked LDL binding to the LDL receptor. Mabs specific for epitopes outside this region had either no or partial ability to block LDL binding. In order to define the region of apoB directly involved in the interaction with the LDL receptor we have tested 22 different Mabs for their ability to bind to LDL already fixed to the receptor. A Mab specific for an epitope situated between residues 2835 and 2922 could bind to its epitope on LDL fixed to its receptor whereas a second epitope between residues 2980 and 3084 is inaccessible on receptor-bound LDL. A series of epitopes near residue 3500 of apoB is totally inaccessible, and another situated between residues 4027 and 4081 is poorly accessible on receptor-bound LDL. In contrast, an epitope that is situated between residues 4154 and 4189 is fully exposed. Mabs specific for epitopes upstream and downstream of the region 3000-4000 can bind to receptor-bound LDL with a stoichiometry close to unity. Our results strongly suggest that the unique region of apoB directly involved in the LDL-receptor interaction is that of the T2/T3 junction.  相似文献   

17.
Membrane proteins from ovarian follicles, testis and somatic tissues of rainbow trout, Oncorhynchus mykiss, were extracted by ultracentrifugation, separated on sodium dodecyl sulphate gels and isolated on polyvinyl difluoride membranes. Vitellogenin receptor proteins were visualised using protein staining and hybridisation with 125I-vitellogenin Four follicle-membrane proteins, with molecular masses of 220, 210, 110 and 100 kDa, showed a strong affinity for vitellogenin and were specific to the ovary. Other homologous lipoproteins (very low density lipoprotein, low density lipoprotein and high density lipoprotein) had a very limited ability to displace 125I-vitellogenin from its receptor, indicating that the ovarian receptor proteins were fairly specific for vitellogenin. Proteins with an affinity for very low density lipoprotein and low density lipoprotein were visualised in liver, spleen and muscle, eluting on sodium dodecyl sulphate gels with molecular masses of about 150 kDa. Peptides generated from trypsin digests of the receptor proteins with a high affinity for vitellogenin showed sequence homology with receptors in the lipoprotein family, including a sequence that is believed to act as the internalisation signal [Phe-Asp-Asn-Phe-Tyr-] and, a sequence identity with the recently characterised chicken vitellogenin/very low density lipoprotein receptor [Ser-Glu-Leu-Tyr-Glu-Pro-Ala-]. Together, the ligand blotting and peptide sequence data support the contention that the four ovarian membrane proteins isolated are receptor proteins specific for vitellogenin and they do not bind other plasma lipoproteins to any significant degree.Abbreviations BSA bovine serum albumin - HDL high density lipoprotein - LDL low-density lipoprotein - HPLC high performance liquid chromatograph - PVDF polyvinylidene difluoride - RIA radioimmunoassay - rt-VTG rainbow trout vitellogenin - SDS sodium dodecyl sulphate - VLDL very low density lipoprotein - VTG vitellogenin - VRP-1,-2,-3 or -4 vitellogenin receptor proteins  相似文献   

18.
PCSK9 (proprotein convertase subtilisin-like/kexin type 9) is an emerging target for pharmaceutical intervention. This multidomain protein interacts with the LDL receptor (LDLR), promoting receptor degradation. Insofar as PCSK9 inhibition induces a decrease in plasma cholesterol levels, understanding the nature of the binding interaction between PCSK9 and the LDLR is of critical importance. In this study, the ability of PCSK9 to compete with apoE3 N-terminal domain-containing reconstituted HDL for receptor binding was examined. Whereas full-length PCSK9 was an effective competitor, the N-terminal domain (composed of the prodomain and catalytic domain) was not. Surprisingly, the C-terminal domain (CT domain) of PCSK9 was able to compete. Using a direct binding interaction assay, we show that the PCSK9 CT domain bound to the LDLR in a calcium-dependent manner and that co-incubation with the prodomain and catalytic domain had no effect on this binding. To further characterize this interaction, two LDLR fragments, the classical ligand-binding domain (LBD) and the EGF precursor homology domain, were expressed in stably transfected HEK 293 cells and isolated. Binding assays showed that the PCSK9 CT domain bound to the LBD at pH 5.4. Thus, CT domain interaction with the LBD of the LDLR at endosomal pH constitutes a second step in the PCSK9-mediated LDLR binding that leads to receptor degradation.  相似文献   

19.
【目的】卵黄原蛋白受体(vitellogenin receptor,VgR)属于低密度脂蛋白受体,通过介导内吞作用为发育中的卵母细胞摄取卵黄原蛋白,为胚胎发育提供营养物质,在昆虫生殖过程中发挥关键作用。为研究黑尾叶蝉Nephotettix cincticeps VgR(NcVgR)基因的生理功能及其在生殖中的作用,本研究克隆并解析了NcVgR基因的序列,并对其时空表达进行了研究。【方法】根据黑尾叶蝉转录组数据信息,利用RT-PCR克隆了NcVgR基因,并进行了生物信息学分析;利用实时荧光定量PCR研究了不同发育时期、成虫不同组织NcVgR的表达水平。【结果】NcVgR c DNA序列全长6 676 bp,开放阅读框长度5 568 bp,编码1 855个氨基酸,预测编码蛋白的分子量为206 k D,N端前17个氨基酸为信号肽。序列分析显示,NcVgR具有低密度脂蛋白家族的5个经典保守域,即:配体结合域(ligand-binding domain,LBD)、表皮生长因子前体同源域(EGF-precursor homology domain,EGFP)、O-糖链结构域(O-linked sugar domain,OLSD)、跨膜域(transmembrane domain,TMD)和胞质尾域(cytoplasmic domain)。系统发育分析表明,NcVgR与褐飞虱N.lugens VgR亲缘关系最近。实时荧光定量PCR结果显示,NcVgR转录起始时间为5龄若虫,羽化后转录水平逐渐上升,至羽化后8 d达到峰值,随后下降。有意思的是,随着黑尾叶蝉产卵,NcVgR转录水平再次上升,至羽化后16 d达到最高水平。组织定位结果显示,NcVgR在黑尾叶蝉雌成虫卵巢中特异性高表达,而在雌成虫脂肪体和肠道中微量表达,在雌成虫脑及雄成虫中均未检测到表达。【结论】NcVgR在黑尾叶蝉雌成虫卵巢中特异性表达,并且不同发育时期具有不同的表达量,这为研究黑尾叶蝉的生殖调控机理提供了分子信息。  相似文献   

20.
We have designed an in vitro expression system for human apolipoprotein (apo) B. A full-length human apoB minigene was constructed from cDNA and genomic apoB clones and inserted into a vector where its expression was directed by the cytomegalovirus promoter. The apoB minigene was expressed in a rat hepatoma cell line, McA-RH7777. Human apoB100, which is the ligand for the low density lipoprotein receptor, was secreted in low density lipoprotein or very low density lipoprotein particles, depending on the composition of the medium. A protein with the mobility of apoB48, a structurally related protein involved in cholesterol metabolism, was also produced from the human apoB minigene. This in vitro expression system for human apoB will enable investigators to identify which domains of this protein are involved in processes such as lipoprotein assembly and secretion. This system should also allow investigators to identify definitively the domain in apoB that enables the protein to bind to the low density lipoprotein receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号