首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of antimonite [Sb(III)], an activated form of Pentostam or Glucantime. Downregulation of LmAQP1 provides resistance to trivalent antimony compounds and increased expression of LmAQP1 in drug‐resistant parasites can reverse the resistance. Besides metalloid transport, LmAQP1 is also permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. LmAQP1 also plays a physiological role in volume regulation and osmotaxis. In this study, we examined the role of extracellular C‐loop glutamates (Glu143, Glu145 and Glu152) in LmAQP1 activity. Alteration of both Glu143 and Glu145 to alanines did not affect either the biochemical or physiological properties of the protein, suggesting that neither residue is critical for LmAQP1 activity. Alteration of Glu152 to alanine, aspartate and glutamine affected metalloid transport in the order, wild‐type > E152Q > E152D > E152A. In fact, axenic amastigotes expressing E152A LmAQP1 accumulated negligible levels of either arsenite [As(III)] or Sb(III). Alteration of Glu152 significantly affected volume regulation and osmotaxis, suggesting that Glu152 is critical for the physiological activity of the parasite. More importantly, alteration of Glu152 to alanine did not affect glycerol permeability. Although the metalloids, As(III) and Sb(III), are believed to be transported through aquaglyceroporin channels as they behave as inorganic molecular mimic of glycerol, this is the first report where metalloid and glycerol transport can be dissected by a single mutation at the extracellular pore entry of LmAQP1 channel.  相似文献   

2.
Leishmaniasis is a protozoan parasitic disease that affects 12 million people worldwide. The first line choice for the treatment of this disease is antimonial drugs. In the endemic regions, resistance to this class of drugs is a major impediment to treatment. Microbes often become resistant to drugs by mutation or down-regulation of uptake systems, but the uptake system for the antimonial drugs in Leishmania is unknown. In other organisms, aquaglyceroporins have been shown to facilitate uptake of trivalent metalloids. In this study, we report the identification and characterization of aquaglyceroporins from Leishmania major (LmAQP1) and Leishmania tarentolae (LtAQP1), respectively. These Leishmania proteins have the conserved signature motifs of aquaglyceroporins. Transfection of LmAQP1 into three species of Leishmania, L. tarentolae, Leishmania infantum, and L. major, produced hypersensitivity to both As(III) and Sb(III) in all three strains. Increased production of LmAQP1 was detected by immunoblotting. Drug-resistant parasites with various mutations leading to resistance mechanisms became hypersensitive to both metalloids after expression of LmAQP1. Increased rates of uptake of As(III) or Sb(III) correlated with metalloid sensitivity of the wild type and drug-resistant transfectants. Transfection of LmAQP1 in a Pentostam-resistant field isolate also sensitized the parasite in the macrophage-associated amastigote form. One allele of LmAQP1 was disrupted in L. major, and the resulting cells became 10-fold more resistant to Sb(III). This is the first report of the uptake of a metalloid drug by an aquaglyceroporin in Leishmania, suggesting a strategy to reverse resistance in the field.  相似文献   

3.
Amastigotes of Leishmania mexicana pifanoi were cultivated by serial transfers in cell-free medium UM-54 at 33 and 35 C. Electron microscopy was used to analyze the structural relationships among promastigotes, axenically cultured amastigotes, and amastigotes in footpads of infected hamsters. These studies revealed very close structural similarities between culture and hamster derived amastigotes. However, both of these amastigotes differed from the promastigotes in the following aspects. The flagellum of promastigotes contained a paraxial rod originating at the axosome level within the flagellar pocket, whereas the flagellum of amastigotes lacks this structure. The flagellar pocket of promastigotes was usually small whereas amastigotes had a distended reservoir. Subpellicular microtubules of promastigotes terminated at the posterior end, whereas those of amastigotes ended subterminally. Membrane bounded vesicles were present only in amastigotes. These results along with the biologic and antigenic comparisons indicate that amastigotes obtained from axenic cultures are related very closely to amastigotes from infected hamster footpads and that their relationship to promastigotes is far more distant.  相似文献   

4.
A striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes. LmxMPK3 null mutants resemble the LmxMKK knockouts with flagella reduced to one-fifth of the wild-type length, stumpy cell bodies, and vesicles and membrane fragments in the flagellar pocket. A constitutively activated recombinant LmxMKK activates LmxMPK3 in vitro. Moreover, LmxMKK is likely to be directly involved in the phosphorylation of LmxMPK3 in vivo. Finally, LmxMPK3 is able to phosphorylate LmxMKK, indicating a possible feedback regulation. This is the first time that two interacting components of a signaling cascade have been described in the genus Leishmania. Moreover, we set the stage for the analysis of reversible phosphorylation in flagellar morphogenesis.  相似文献   

5.
Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen‐activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo‐osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr‐197 and this phosphorylation requires LmjMPK2 activity. Lys‐42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild‐type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild‐type cells. This is the first report where a parasite aquaglyceroporin activity is post‐translationally modulated by a mitogen‐activated protein kinase.  相似文献   

6.
A major difference between the metabolism of Leishmania species amastigotes and cultured promastigotes was found in the area of CO2 fixation and phosphoenolpyruvate metabolism. Malate dehydrogenase (EC 1.1.1.37) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) were at much higher activities in amastigotes than promastigotes of both L. m. mexicana and L. donovani, whereas the reverse was true of pyruvate kinase (EC 2.7.1.40). Pyruvate carboxylase (EC 6.4.1.1) and malic enzyme (carboxylating) (EC 1.1.1.40) could not be detected in L. m. mexicana amastigotes. Promastigotes of L. m. mexicana had a high NAD-linked glutamate dehydrogenase activity in comparison to amastigotes, whereas NADP-linked glutamate dehydrogenase activity was detected only in amastigotes. Leishmania m. mexicana culture promastigotes were killed in vitro by the trivalent antimonial Triostam (LD50, 20 micrograms/ml) and the trivalent arsenical melarsen oxide (LD50, 20 micrograms/ml), but they were unaffected by Pentostam. Neither antimonial drug significantly inhibited leishmanial hexokinase (EC 2.7.1.2), phosphofructokinase (EC 2.7.1.11), pyruvate kinase, malate dehydrogenase or phosphoenolpyruvate carboxykinase, whereas melarsen oxide was a potent inhibitor of all the enzymes tested except phosphoenolpyruvate carboxykinase.  相似文献   

7.
Freshly transformed Leishmania donovani amastigotes from hamster spleen were used to establish axenic cultures at high density in a modified Grace's medium, which was only partly replenished when cultures were fed. Small, free-swimming, highly active stationary phase promastigotes with a short cell body and long flagellum were induced in this medium. The freshly transformed stationary phase promastigotes so induced were less able to bind peanut agglutinin, had more than 40-fold increased resistance to killing by normal human serum, and 15-fold increased infectivity both in vivo and in vitro when compared to freshly transformed logarithmic phase or long term culture promastigotes. These short form promastigotes may correspond to the metacyclic promastigote forms in the sand fly vector.  相似文献   

8.
The density and distribution of intramembranous particles was analyzed in freeze fracture replicas of the plasma membrane of amastigotes, and infective as well as noninfective promastigotes of Leishmania mexicana amazonensis. The density of intramembranous particles on both protoplasmic and extracellular faces was higher in infective than in noninfective promastigotes and it was lower in amastigotes than in promastigotes. Amastigotes purified immediately after tissue homogenization were surrounded by a membrane which corresponded to the membrane which lined the endocytic vacuoles where the parasites were located within the tissue macrophages. Aggregation of the particles was seen in the flagellar membrane at the point of emergence of the flagellum from the flagellar pocket. Differences in the organization of the particles were seen in the membrane which lined the flagellar pocket of amastigotes and promastigotes. The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the plasma membrane of L. m. amazonensis. The effect of filipin in the parasite's structure was analyzed by scanning electron microscopy and by transmission electron microscopy of thin sections and freeze fracture replicas. Filipin sterol complexes were distributed throughout the membrane which lined the cell body, the flagellar pocket, and the flagellum. No filipin sterol complexes were seen in the cell body-flagellar adhesion zone. The density of filipin sterol complexes was lower in the membrane lining the flagellum than in that lining the cell body of promastigotes.  相似文献   

9.
Leishmania donovani are the causative agents of kala azar in humans. These organisms cycle between the proline-rich environment of the sand fly vector (extracellular promastigotes) and the sugar-rich condition in the mammalian host (intracellular amastigotes). Parasites have adapted to these extreme changes in proline concentrations: promastigotes utilize proline as a carbon source, whereas amastigotes utilize sugars and fatty acids. Previous studies have suggested that promastigotes and amastigotes express distinct proline transporters. However, the information available on these transporters is limited. In this work, proline transport was investigated in axenic L. donovani cultures. Three transport systems were identified: cation-dependent and -independent proline transporters in promastigotes (systems A and B, respectively) and a single cation-independent transporter in amastigotes (system C). Systems A and C have broad specificity to almost all amino acids and obtain optimum activity at acidic pH ranges (pH 6 and 5, respectively). System B is more specific to proline, as it is inhibited by only five amino acids. Temperature response analyses indicated that the transporters of both promastigotes and amastigotes perform best at 37 degrees C. The activity of system A during parasite differentiation was assessed. The transport activity of system A disappeared 3 days after promastigotes were induced to differentiate into amastigotes. In these cells, elevated temperature and acidic pH each suppressed the activity of system A. When amastigotes were induced to differentiate back into promastigotes, system A resumed its activity 24 h after differentiation was initiated. In conclusion, L. donovani obtain proline transport systems that are stage specific, regulated by both pH and temperature. This paper constitutes the first investigation of amino acid transport in axenic L. donovani.  相似文献   

10.
Leishmania are protozoan parasites that infect various mammalian species, including humans. It is generally thought that random attachment of the flagellated promastigotes to mononuclear phagocytes initiates their uptake via circumferential pseudopods. Intracellularly, the promastigotes become located in phagolysosomes in which they transform to and survive as 'aflagellated' amastigotes that hide their shortened flagellum within the flagellar pocket. Unrestricted replication of these amastigotes is assumed to cause the eventual burst of the host cell, thereby releasing the infectious parasites. Here, Mike Rittig and Christian Bogdan review a large body of literature containing potentially important but poorly appreciated findings, which together with recent results, argue for Leishmania-host-cell interactions that are much more complex than generally thought.  相似文献   

11.
Leishmania parasites survive despite exposure to the toxic nitrosative oxidants during phagocytosis by the host cell. In this work, the authors investigated comparatively the resistance of Leishmania amazonensis promastigotes and axenic amastigotes to a relatively strong nitrosating agent that acts as a nitric oxide (NO) donor, sodium nitroprusside (SNP). Results demonstrate that SNP is able to decrease, in vitro, the number of L. amazonensis promastigotes and axenic amastigotes in a dose-dependent maner. Promastigotes, cultured in the presence of 0.25, 0.5, and 1 mmol L(-1) SNP for 24 h showed about 75% growth inhibition, and 97-100% when the cultures were treated with >2 mmol L(-1) SNP. In contrast, when axenic amastigotes were growing in the presence of 0.25-8 mM SNP added to the culture medium, 50% was the maximum of growth inhibition observed. Treated promastigotes presented reduced motility and became round in shape further confirming the leishmanicidal activity of SNP. On the other hand, axenic amastigotes, besides being much more resistant to SNP-mediated cytotoxicity, did not show marked morphological alteration when incubated for 24 h, until 8 mM concentrations of this nitrosating agent were used. The cytotoxicity toward L. amazonensis was attenuated by reduced glutathione (GSH), supporting the view that SNP-mediated toxicity triggered multiple oxidative mechanisms, including oxidation of thiols groups and metal-independent oxidation of biomolecules to free radical intermediates.  相似文献   

12.
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.  相似文献   

13.
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.  相似文献   

14.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

15.
Leishmania donovani ADP-ribosylation factor-like protein 3A (LdARL-3A) is a small G protein isolated from the protozoan parasite L. donovani with no defined physiological function. Previously [Cuvillier, A., Redon, F., Antoine, J.-C., Chardin, P., DeVos, T., and Merlin, G. (2000) J Cell Sci 113: 2065-2074] we have shown that overexpression in L. amazonensis promastigotes of the mutated protein LdARL-3A-Q70L, which remains constitutively associated with GTP, leads to the disappearance of the flagellum but does not impair cell viability or growth. Here we report that parasites overexpressing LdARL-3A-Q70L can invade in vitro cultivated macrophages to the same extent as control cells, demonstrating that the flagellum is not necessary for attachment to or engulfment into macrophages. These infections are productive because amastigotes differentiate and multiply. However, aflagellated LdARL-3A-Q70L-overexpressing Leishmania promastigotes could not survive in experimentally infected Lutzomyia longipalpis insect vectors, in contrast to untransfected or native LdARL-3A-overexpressing cells. Overexpression of the native and mutated proteins did not modify in vitro procyclic to metacyclic lipophosphoglycan maturation or differentiation from procyclic to metacyclic promastigotes, nevertheless there is a block in transmission of Leishmania. Better understanding of LdARL-3A pathways, notably those regarding flagellum biogenesis, may lead to the future development of Leishmania-specific drugs, which may stop parasite transmission in nature without affecting other species.  相似文献   

16.
The cellular ultrastructure and surface glycoconjugate expression of three life stages of Leishmania major were compared. Noninfective logarithmic phase promastigotes (LP) are immature cells bearing a thin cell coat, short flagellum, small and empty flagellar pocket, and a loose cytoplasm filled with profiles of ER and large Golgi complex. LP also contain subpopulations of maturing cells containing less ER and Golgi and synthesizing cytoplasmic granules of different size, number, and electron-density. Infective or metacyclic promastigotes (MP) are fully differentiated nondividing forms with a thickened, prominent cell coat, long flagellum, distended flagellar pocket filled with secretory material, and few cytoplasmic organelles other than abundant electron-dense granules. Tissue amastigotes also contain electron-dense cytoplasmic granules, their flagellar pockets are also enlarged and contain secretory material, but they lack a discernable cell coat. Immunogold labeling of GP63 on the cell surface was extensive only on amastigotes. Promastigote GP63 appeared to be masked by the presence of a densely packed lipophosphoglycan (LPG) coat which was extensively labeled on the entire surface of MP and LP. An elongated, developmentally modified form of LPG was abundantly labeled only on MP. LPG was poorly labeled on amastigotes, arguing that the promastigote cell coat is a stage-specific structure which is lost during intracellular transformation.  相似文献   

17.
18.
Monoclonal antibodies specific for the soluble, secreted acid phosphatase (EC 3.1.3.2) of Leishmania donovani were used to investigate the localization of this enzyme in extracellular promastigotes and intracellular amastigotes. Indirect immunofluorescence showed a weak general staining in the promastigote cytoplasm, together with strong fluorescence in the flagellar reservoir. Immunofluorescence studies on U937 cells infected in vitro with L. donovani showed that the pathogenic amastigote stage also produced soluble acid phosphatase. Metabolic labeling experiments using promastigotes indicated that the intracellular enzyme was soluble prior to secretion and no evidence was found for the association of secretory acid phosphatase with cell membranes after protein synthesis. The rapid release of acid phosphatase from the flagellar reservoir was energy dependent and may be coupled to beating of the flagellum. The results demonstrated that acid phosphatase was secreted into the flagellar reservoir by Leishmania promastigotes using a conventional constitutive secretory mechanism, and subsequently released from the reservoir into the extracellular medium.  相似文献   

19.
Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as two isoforms, iso-1 and iso-2, which are both expressed primarily in the promastigote stage of the life cycle. These two isoforms constitute modular structures: they differ exclusively and extensively in their NH2-terminal hydrophilic domains, but the remainder of each isoform sequence is identical to that of the other. We have localized these glucose transporters within promastigotes by two approaches. In the first method, we have raised a polyclonal antibody against the COOH-terminal hydrophilic domain shared by both iso-1 and iso-2, and we have used this antibody to detect the transporters by confocal immunofluorescence microscopy and immunoelectron microscopy. The staining observed with this antibody occurs primarily on the plasma membrane and the membrane of the flagellar pocket, but there is also light staining on the flagellum. We have also localized each isoform separately by introducing an epitope tag into each protein sequence. These experiments demonstrate that iso- 1, the minor isoform, resides primarily on the flagellar membrane, while iso-2, the major isoform, is located on the plasma membrane and the flagellar pocket. Hence, each isoform is differentially sorted, and the structural information for targeting each transporter isoform to its correct membrane address resides within the NH2-terminal hydrophilic domain.  相似文献   

20.
L. donovani promastigotes were subjected to heat treatment yielding an axenic amastigote stage which was long-term cultured at 37 degrees C. No differences were observed between the growth rates of axenic amastigotes and promastigotes. Flow cytometry-derived DNA histograms of axenic amastigotes and promastigotes were typical of exponentially growing cell populations. Moreover, axenic amastigotes were metabolically active as evidenced by the release of an immunoprecipitable extracellular acid phosphatase (SAcP) into their culture supernatant. Cell transformation was confirmed by transmission electronmicroscopic examination of thin sections and extended by fracture-flip survey which allowed differentiation of cell membranes. The ultrastructure and nanoanatomy of axenic amastigotes was identical to that of intracellular amastigotes. The production of large amounts of heat-shock axenic amastigotes suitable for biochemical and biological studies of differentiation in Leishmania donovani may have important implications in the development of prevention and/or treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号