首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Anteroposterior polarity in early C. elegans embryos is required for the specification of somatic and germline lineages, and is initiated by a sperm-induced reorganization of the cortical cytoskeleton and PAR polarity proteins. Through mechanisms that are not understood, the kinases PAR-1 and PAR-4, and other PAR proteins cause the cytoplasmic zinc finger protein MEX-5 to accumulate asymmetrically in the anterior half of the one-cell embryo. We show that MEX-5 asymmetry requires neither vectorial transport to the anterior, nor protein degradation in the posterior. MEX-5 has a restricted mobility before fertilization and in the anterior of one-cell embryos. However, MEX-5 mobility in the posterior increases as asymmetry develops, presumably allowing accumulation in the anterior. The MEX-5 zinc fingers and a small, C-terminal domain are essential for asymmetry; the zinc fingers restrict MEX-5 mobility, and the C-terminal domain is required for the increase in posterior mobility. We show that a crucial residue in the C-terminus, Ser 458, is phosphorylated in vivo. PAR-1 and PAR-4 kinase activities are required for the phosphorylation of S458, providing a link between PAR polarity proteins and the cytoplasmic asymmetry of MEX-5.  相似文献   

3.
4.
The tandem zinc finger (TZF) domain of the protein TIS11d binds to the class II AU-rich element (ARE) in the 3' untranslated region (3' UTR) of target mRNAs and promotes their deadenylation and degradation. The NMR structure of the TIS11d TZF domain bound to the RNA sequence 5'-UUAUUUAUU-3' comprises a pair of novel CCCH fingers of type CX(8)CX(5)CX(3)H separated by an 18-residue linker. The two TIS11d zinc fingers bind in a symmetrical fashion to adjacent 5'-UAUU-3' subsites on the single-stranded RNA via a combination of electrostatic and hydrogen-bonding interactions, with intercalative stacking between conserved aromatic side chains and the RNA bases. Sequence specificity in RNA recognition is achieved by a network of intermolecular hydrogen bonds, mostly between TIS11d main-chain functional groups and the Watson-Crick edges of the bases. The TIS11d structure provides insights into the RNA-binding functions of this large family of CCCH zinc finger proteins.  相似文献   

5.
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family.  相似文献   

6.
The Arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein is characterized by two tandem‐arrayed CCCH‐type zinc fingers. We have previously found that AtTZF1 affects hormone‐mediated growth, stress and gene expression responses. While much has been learned at the genetic and physiological level, the molecular mechanisms underlying the effects of AtTZF1 on gene expression remain obscure. A human TZF protein, hTTP, is known to bind and trigger the degradation of mRNAs containing AU‐rich elements (AREs) at the 3′ untranslated regions. However, while the TZF motif of hTTP is characterized by CX8CX5CX3H‐X18‐CX8CX5CX3H, AtTZF1 contains an atypical motif of CX7CX5CX3H‐X16‐CX5CX4CX3H. Moreover, the TZF motif of AtTZF1 is preceded by an arginine‐rich (RR) region that is unique to plants. Using fluorescence anisotropy and electrophoretic mobility shift binding assays, we have demonstrated that AtTZF1 binds to RNA molecules with specificity and the interaction is dependent on the presence of zinc. Compared with hTTP, in which TZF is solely responsible for RNA binding, both TZF and RR regions of AtTZF1 are required to achieve high‐affinity RNA binding. Moreover, zinc finger integrity is vital for RNA binding. Using a plant protoplast transient expression analysis we have further revealed that AtTZF1 can trigger the decay of ARE‐containing mRNAs in vivo. Taken together, our results support the notion that AtTZF1 is involved in RNA turnover.  相似文献   

7.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

8.
9.
TIS11d is a member of the CCCH-type family of tandem zinc finger (TZF) proteins; the TZF domain of TIS11d (residues 151–220) is sufficient to bind and destabilize its target mRNAs with high specificity. In this study, the TZF domain of TIS11d is simulated in an aqueous environment in both the free and RNA-bound states. Multiple nanosecond timescale molecular dynamics trajectories of TIS11d wild-type and E157R/E195K mutant with different RNA sequences were performed to investigate the molecular basis for RNA binding specificities of this TZF domain. A variety of measures of the protein structure, fluctuations, and dynamics were used to analyze the trajectories. The results of this study support the following conclusions: (1) the structure of the two fingers is maintained in the free state but a global reorientation occurs to yield a more compact structure; (2) mutation of the glutamate residues at positions 157 and 195 to arginine and lysine, respectively, affects the RNA recognition by this TIS11d mutant in agreement with the findings of Pagano et al. (J Biol Chem 2007; 282:8883–8894); and (3) we predict that the E157R/E195K mutant will present a more relaxed RNA binding specificity relative to wild-type TIS11d based on the more favorable nonsequence-specific Coulomb interaction of the two positively charged residues at positions 157 and 195 with the RNA backbone, which compensates for a partial loss of the stacking interaction of aromatic side chains with the RNA bases.  相似文献   

10.
Tristetraprolin (TTP), the best known member of a class of tandem (R/K)YKTELCX8CX5CX3H zinc finger proteins, can destabilize target mRNAs by first binding to AU-rich elements (AREs) in their 3′-untranslated regions (UTRs) and subsequently promoting deadenylation and ultimate destruction of those mRNAs. This study sought to determine the roles of selected amino acids in the RNA binding domain, known as the tandem zinc finger (TZF) domain, in the ability of the full-length protein to bind to AREs within the tumor necrosis factor α (TNF) mRNA 3′-UTR. Within the CX8C region of the TZF domain, mutation of some of the residues specific to TTP, not found in other members of the TTP protein family, resulted in decreased binding to RNA as well as inhibited mRNA deadenylation and decay. Evaluation of simulation solution models revealed a distinct structure in the second zinc finger of TTP that was induced by the presence of these TTP-specific residues. In addition, mutations within the lead-in sequences preceding the first C of highly conserved residues within the CX5C or CX3H regions or within the linker region between the two fingers also perturbed both RNA binding and the simulation model of the TZF domain in complex with RNA. We conclude that, although the majority of conserved residues within the TZF domain of TTP are required for productive binding, not all residues at sequence-equivalent positions in the two zinc fingers of the TZF domain of TTP are functionally equivalent.  相似文献   

11.
Lin R 《Developmental biology》2003,258(1):226-239
In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.  相似文献   

12.
Polarization of the C. elegans zygote along the anterior-posterior axis depends on cortically enriched (PAR) and cytoplasmic (MEX-5/6) proteins, which function together to localize determinants (e.g. PIE-1) in response to a polarizing cue associated with the sperm asters. Using time-lapse microscopy and GFP fusions, we have analyzed the localization dynamics of PAR-2, PAR-6, MEX-5, MEX-6 and PIE-1 in wild-type and mutant embryos. These studies reveal that polarization involves two genetically and temporally distinct phases. During the first phase (establishment), the sperm asters at one end of the embryo exclude the PAR-3/PAR-6/PKC3 complex from the nearby cortex, allowing the ring finger protein PAR-2 to accumulate in an expanding 'posterior' domain. Onset of the establishment phase involves the non-muscle myosin NMY-2 and the 14-3-3 protein PAR-5. The kinase PAR-1 and the CCCH finger proteins MEX-5 and MEX-6 also function during the establishment phase in a feedback loop to regulate growth of the posterior domain. The second phase begins after pronuclear meeting, when the sperm asters begin to invade the anterior. During this phase (maintenance), PAR-2 maintains anterior-posterior polarity by excluding the PAR-3/PAR-6/PKC3 complex from the posterior. These findings provide a model for how PAR and MEX proteins convert a transient asymmetry into a stably polarized axis.  相似文献   

13.
An asymmetrical network of cortically localized PAR proteins forms shortly after fertilization of the C. elegans egg. This network is required for subsequent asymmetries in the expression patterns of several proteins that are encoded by nonlocalized, maternally expressed mRNAs. We provide evidence that two nearly identical genes, mex-5 and mex-6, link PAR asymmetry to those subsequent protein asymmetries. MEX-5 is a novel, cytoplasmic protein that is localized through PAR activities to the anterior pole of the 1-cell stage embryo. MEX-5 localization is reciprocal to that of a group of posterior-localized proteins called germline proteins. Ectopic expression of MEX-5 is sufficient to inhibit the expression of germline proteins, suggesting that MEX-5 functions to inhibit anterior expression of the germline proteins.  相似文献   

14.
Polo kinases are known key regulators of cell divisions. Here we report a novel, non-cell division function for polo kinases in embryonic polarity of newly fertilized Caenorhabditis elegans embryos. We show that polo kinases, via their polo box domains, bind to and regulate the activity of two key polarity proteins, MEX-5 and MEX-6. These polo kinases are asymmetrically localized along the anteroposterior axis of newly fertilized C. elegans embryos in a pattern identical to that of MEX-5 and MEX-6. This asymmetric localization of polo kinases depends on MEX-5 and MEX-6, as well as genes regulating MEX-5 and MEX-6 asymmetry. We identify an amino acid of MEX-5, T(186), essential for polo binding and show that T(186) is important for MEX-5 function in vivo. We also show that MBK-2, a developmentally regulated DYRK2 kinase activated at meiosis II, primes T(186) for subsequent polo kinase-dependent phosphorylation. Prior phosphorylation of MEX-5 at T(186) greatly enhances phosphorylation of MEX-5 by polo kinases in vitro. Our results provide a mechanism by which MEX-5 and MEX-6 function is temporally regulated during the crucial oocyte-to-embryo transition.  相似文献   

15.
16.
17.
In a screen for RNA binding proteins expressed during murine spermatogenesis, we cloned a novel, ancient zinc finger protein possessing a region common to a small class of RNA binding proteins. Zfr (zinc finger RNA binding) encodes a protein of 1052 amino acids with three widely spaced Cys2His2 zinc fingers. Outside of the zinc fingers, ZFR shares a region that is highly conserved between several RNA binding proteins containing copies of the double-stranded RNA binding motif. By northern blotting, Zfr is expressed at highest levels within the testis, ovary and brain. Immunohistochemistry and confocal microscopy were used to show that ZFR is highly expressed during meiosis I in males and females and is chromosome associated. Zfr is also expressed in Sertoli cells in the testis and granulosa cells in the ovary where it is localized to the nucleus. Using fluorescent in situ hybridization we mapped Zfr to chromosome 15 region A. ZFR appears to be an ancient protein, as apparent homologs exist in invertebrates (D. melanogaster) nematodes (C. elegans) and humans (H. sapiens).  相似文献   

18.
19.
20.
Although germ cell formation has been relatively well understood in worms and insects, how germ cell-specific developmental programs are initiated is not clear. In Caenorhabditis elegans, translational activation of maternal nos-2 mRNA is the earliest known molecular event specific to the germline founder cell P(4). Cis-elements in nos-2 3'UTR have been shown to mediate translational control; however, the trans-acting proteins are not known. Here, we provide evidence that four maternal RNA-binding proteins, OMA-1, OMA-2, MEX-3 and SPN-4, bind nos-2 3'UTR to suppress its translation, and POS-1, another maternal RNA-binding protein, relieves this suppression in P(4). The POS-1: SPN-4 ratio in P(4) increases significantly over its precursor, P(3); and POS-1 competes with SPN-4 for binding to nos-2 RNA in vitro. We propose temporal changes in the relative concentrations of POS-1 and SPN-4, through their effect on the translational status of maternal mRNAs such as nos-2, initiate germ cell-specific developmental programs in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号