首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction and Expression of Recombinant Genes in Ascidian Embryos   总被引:1,自引:0,他引:1  
In order to examine the expression of exogenous genes introduced into ascidian eggs, two recombinant plasmids pmiwZ and pHrMA4aCAT were microinjected into the cytoplasm of fertilized eggs of Ciona savignyi and Halocynthia roretzi , respectively. The plasmid pmiwZ contains the coding sequence of bacterial β-galactosidase gene ( lac-Z ) fused with animal gene promoters, while pHrMA4aCAT was constructed by fusing about 1.4-kb long 5' flanking region of H. roretzi muscle actin gene HrMA4a with bacterial chloramphenicol acetyltransferase gene ( CAT ). Injection of approximately 160 pl of 10 μg/ml pmiwZ DNA into Ciona eggs did not affect the embryogenesis, although introduction of the same volume of 30 μg/ml pmiwZ DNA resulted in abnormal development of injected eggs. When the expression of lac-Z was examined by histochemical detection of the enzyme activity, the expression was evident in the early tailbud embryos and later stage embryos, and larvae, irrespective of linear or circular form of the plasmid. The enzyme activity appeared in various cell-types including epidermis, nervous system, endoderm, mesenchyme, notochord, and muscle. In contrast, when pHrMA4aCAT was introduced into Halocynthia eggs and the appearance of CAT protein was examined later by the anti-CAT antibody, the CAT expression was restricted to muscle cells. These results indicate that the recombinant genes introduced into ascidian eggs could express during embryogenesis and that the 1.4-kb long 5' flanking region of HrMA4a contains regulatory sequences enough for the appropriate spatial and temporal expression of the gene.  相似文献   

2.
3.
4.
The myoplasm of ascidian eggs is a localized cytoskeletal domain that is segregated to presumptive larval tail muscle cells during embryonic development. We have identified a cytoskeletal protein recognized by a vertebrate neurofilament monoclonal antibody (NN18) which is concentrated in the myoplasm in eggs and embryos of a variety of ascidian species. The NN18 antigen is localized in the periphery of unfertilized eggs, segregates with the myoplasm after fertilization, and enters the larval tail muscle cells during embryonic development. Western blots of one-dimensional and two-dimensional gels showed that the major component recognized by NN18 antibody is a 58 x 10(3) Mr protein (p58), which exists in at least three different isoforms. The enrichment of p58 in the Triton X-100-insoluble fraction of eggs and its reticular staining pattern in eggs and embryos suggests that it is a cytoskeletal protein. In subsequent experiments, p58 was used as a marker to determine whether changes in the myoplasm occur in eggs of anural ascidian species, i.e. those exhibiting a life cycle lacking tadpole larvae with differentiated muscle cells. Although p58 was localized in the myoplasm in eggs of four urodele ascidian species that develop into swimming tadpole larvae, this protein was distributed uniformly in eggs of three anural ascidian species. The eggs of two of these anural species contained the actin lamina, another component of the myoplasm, whereas the third anural species lacked the actin lamina. There was no detectible localization of p58 after fertilization or segregation into muscle lineage cells during cleavage of anural eggs. NN18 antigen was uniformly distributed in pre-vitellogenic oocytes and then localized in the perinuclear zone during vitellogenesis of urodele and anural ascidians. Subsequently, NN18 antigen was concentrated in the peripheral cytoplasm of post-vitellogenic oocytes and mature eggs of urodele, but not anural, ascidians. It is concluded that the myoplasm of ascidian eggs contains an intermediate filament-like cytoskeletal network which is missing in anural species that have modified or eliminated the tadpole larva.  相似文献   

5.
Heat shock proteins (HSP) are a group of highly conserved proteins that regulate protein folding and ameliorate the effects of environmental stress. In the present study, the question of whether or not ascidian oocytes, embryos and larvae constitutively synthesize HSP was studied using HSP 60 and HSP 70 antibodies. Developmental stages obtained from Boltenia villosa, Cnemidocarpa finmarkiensis, Styela montereyensis and Corella willmeriana were examined for HSP using indirect immunocytochemistry. Myoplasm in oocytes and unfertilized eggs reacted with HSP 60 and 70 antibodies. HSP signals dramatically moved into the vegetal egg cytoplasm during ooplasmic segregation and colocalized with the myoplasm. In cleavage-stage embryos, HSP signals were partitioned with the myoplasm into muscle progenitor blastomeres and HSP signals were evident in the tail muscle cells of larvae. Immunoblots of proteins extracted from oocytes, eggs, embryos and larvae indicate that anti-HSP 60 recognizes a single band having an estimated molecular weight of 60 kDa. Egg centrifugation experiments suggest that most of the ascidian myoplasmic HSP are mitochondrial proteins. These results raise an intriguing possibility that mitochondria associated with the myoplasm perform biochemical functions that are unique to the embryonic muscle cell lineage.  相似文献   

6.
We have produced two monoclonal antibodies (Epi-1 and Epi-2) which specifically recognize epidermal cells and their derivative, the larval tunic, of developing embryos of the ascidian Halocynthia roretzi. The antigens, examined by indirect immunofluorescence staining, first appear at the early tailbud stage and are present until at least the swimming larval stage. There were distinct and separate puromycin and actinomycin D sensitivity periods for each antigen. Aphidicolin, a specific inhibitor of DNA synthesis, prevented the appearance of each antigen when embryos were exposed to the drug continuously from cleavage stages. These results suggest that the antigens are synthesized during embryogenesis by developing epidermal cells and that several rounds of DNA replication are required for the antigen expression. Early cleavage stage embryos, including fertilized but unsegmented eggs, in which cytokinesis had been blocked with cytochalasin B expressed the antigens, and blastomeres exhibiting the antigens were always of the epidermis lineage. In partial embryos produced by four separated blastomere pairs of the 8-cell embryos, the expression of antigens was seen only in those developed from the animal blastomere pairs, which are progenitors of epidermal cells. These observations indicate that differentiation of epidermal cells in ascidian embryos takes place in a typical "mosaic" fashion.  相似文献   

7.
We counted cell numbers during embryogenesis of the ascidian, Halocynthia roretzi, every hour. Cell numbers were determined by counting the numbers of nuclei in squashed embryos. The cell number of a larva just after hatching was approximately 3000. Our study addresses the question of what factors control the number of rounds of cell division during development. Three kinds of egg fragments were prepared by cutting unfertilized eggs to alter the volume of cytoplasm and the amount of DNA. After the egg fragments were fertilized, the cell numbers were estimated at the hatching stage. The cell numbers of the resulting larvae differed from those of normal larvae. Precursor blastomeres of various tissues were then isolated from normal and manipulated embryos, and cultured as partial embryos. The cell numbers of the resulting partial embryos were counted to estimate the number of cell divisions in each larval tissue. The results suggested that the number of cell divisions is controlled by a distinct mechanism in each tissue. We propose that the number of rounds of cell division during ascidian embryogenesis is controlled by three mechanisms: the first depending on the volume of cytoplasm; the second on the nucleo-cytoplasmic ratio; and the third depending on neither of these parameters. J. Exp. Zool. 284:379-391, 1999.  相似文献   

8.
9.
Egg cytoplasm containing endoderm determinants was transferred to presumptive-muscle or presumptive-epidermis blastomeres isolated from cleavage-stage embryos of the ascidian Halocynthia roretzi. We investigated three aspects of the expression of endoderm-specific alkaline phosphatase (ALP) activity. First, we examined whether ectopic ALP expression, an indication of ectopic endoderm formation, was promoted in cytoplasm-transferred blastomeres isolated at late-cleavage stage. The results showed that the cell fate was converted by the introduced cytoplasm, even in recipient blastomeres in which the cell fate was already restricted to muscle or epidermis, and in those where expression of the muscle- or epidermis-specific genes was already initiated. Next, we examined the formation of endoderm and other tissue in embryos by double staining for ALP and muscle- or epidermis-specific marker. Regions positive for ALP and positive for muscle or epidermis marker were mutually exclusive. These results suggested that muscle- or epidermis-specific genes that were already expressed in the recipient blastomeres were down-regulated in ectopically forming endoderm cells. This is evidence for nuclear plasticity during ascidian embryogenesis. In the last series of experiments, we investigated the timing of the appearance of ALP activity in cytoplasm-transferred embryos. In the partial embryos that were derived from various combination of recipient blastomeres and donor cytoplasm obtained from various staged eggs and embryos, the timing seemed to coincide with the time that starts when cell fusion for cytoplasmic transfer was done. Therefore, the clock that determines the timing of the initiation of ALP expression is likely to start at the moment of cell fusion. Several possible hypotheses for the timing mechanism are discussed.  相似文献   

10.
We report here proteomics-based protein profiles of three embryonic stages of the ascidian Ciona intestinalis. Two-dimensional gel electrophoresis revealed 416, 539, and 695 protein spots in the unfertilized eggs, 16 cell-stage embryos, and tadpole larvae, respectively. Comparative and quantitative analyses of the spot patterns identified proteins showing an increase or decrease in amount during embryonic development. Protein identification by MALDI-TOF/MS indicated not only the abundance and importance of metabolic enzymes and translation elongation factors but also the functional importance of actin-binding proteins and molecular chaperones during ascidian development. Global changes in spots for vitellogenin-like protein suggested post-translational modification or proteolytic digestion of this protein during embryogenesis. Comparison between mRNA and protein levels among unfertilized eggs, 16 cell-stage embryos and tadpole larvae indicated nonparallel expression patterns of genes and proteins. Ascidians provide an excellent system for studying gene expression and cell differentiation during development, and the present study should shed light on the associated molecular mechanism at the protein level.  相似文献   

11.
12.
We have observed ultrastructural features of muscle differentiation in the muscle lineage cells of cleavage-arrested whole embryos and partial embryos of ascidians. Whole embryos of Ciona intestinalis and Ascidia ceratodes were cleavage-arrested with cytochalasin B at the 8-cell stage and reared to an age equivalent to several hours after hatching; these embryos formed extensive myofilaments which were often further organized into myofibrils of different sizes and densities in the peripheral cytoplasm of the two muscle lineage blastomeres (B4.1 pair). Developing myofibrils in cleavage-arrested embryos resembled the muscle elements observed in normal hatched larvae, but were less uniformly organized. A similar development of myofilaments and myofibrils occurred in the muscle lineage cells of multicellular partial embryos reared to "hatching" age. These partial embryos resulted from the isolated muscle lineage pair (B4.1) of blastomeres of the 8-cell stage (Ciona and Ascidia), and from a muscle lineage blastomere pair (B5.2) isolated at the 16-cell stage (Ascidia). Muscle lineage cells in the partial embryos were readily identified by the dense aggregates of mitochondria in their cytoplasm. Taken together, these results from the two kinds of partial embryo effectively eliminate inductive interactions with embryonic tissues other than mesodermal as a necessary factor in the onset of self-differentiation in muscle lineage cells. The relative complexity of muscle phenotype expressed in cleavage-arrested and partial embryos attests to an unusually strong developmental autonomy in the ascidian muscle lineages. This autonomy lends further support to the theory that a localized and segregated egg cytoplasmic determinant is responsible for larval muscle development in ascidian embryos.  相似文献   

13.
14.
Anural ascidians do not develop into a conventional tailed larva with differentiated muscle cells, however, embryos of some anural ascidian species retain the ability to express acetylcholinesterase (AChE) in a vestigial muscle cell lineage. This study examines the number of AChE-positive cells that develop in the anural ascidian Molgula occulta relative to that in the closely related urodele (tailed) species, Molgula oculata. Histochemical assays showed that M. oculata embryos develop 36 to 38 AChE-positive cells, consistent with the number of tail muscle cells expressed in other urodele ascidians. In contrast, M. occulta embryos develop a mean of only 20 AChE-positive cells in their vestigial muscle lineage. Cleavage-arrested embryos of the anural species express AChE only in B-line blastomeres, showing that the vestigial muscle lineage cells are derived from the primary muscle lineage. Less than the expected number of AChE-positive B-line cells develop in cleavage-arrested anural embryos, however, implying that the allocation of primary muscle lineage cells is decreased. Eggs of the anural species can be fertilized with sperm of the urodele species resulting in the development of some larvae that contain a short tail and/or a brain melanocyte, specific features of urodele larvae. The typical urodele number of AChE-positive cells is restored in some of these hybrid embryos. Both primary and secondary muscle lineages are restored because cleavage-arrested hybrid embryos develop more AChE-positive cells in the B-line blastomeres and supernumerary AChE-positive cells in the A-line blastomeres. Hybrid embryos that develop the urodele complement of AChE-positive cells also form a tail and/or a brain melanocyte showing that restoration of muscle lineage cells is coupled to the development of other urodele features. AChE expression occurred in anural embryos with disorganized or dissociated blastomeres, indicating that AChE expression is determined autonomously. It is concluded that an evolutionary change in the allocation of larval muscle lineage cells occurs during development of the anural ascidian M. occulta which can be restored by interspecific hybridization with the urodele ascidian M. oculata.  相似文献   

15.
16.
17.
Unequal partition of preexisting egg cytoplasmic components is one of possible cues to produce various types of cell in development. Segregation during ascidian embryogenesis of mitochondria into muscle lineage cells is a well-known example of cytoplasmic localization and segregation. In this study, using a monoclonal antibody specific to mitochondria, we re-examined changes in the distribution of mitochondria during oogenesis and embryogenesis of the ascidian, Halocynthia roretzi . The quantification method of the relative amount of the mitochondria-specific antigen revealed differences in the amount of mitochondria contained in four blastomere-pairs of an 8-cell embryo; the primary muscle lineage B4.1-pair contained about 40% of the total amount of mitochondria, while the secondary lineage b4.2- and A4.1-pairs contained about 23% and 20% respectively, and non-muscle lineage a 4.2-pair about 17%. In addition, it was shown that the total amount of mitochondria-specific antigen in the embryo remained constant throughout H. roretzi embryonic development. These results suggest that preferential segregation of preexisting mitochondria causes the characteristic distribution pattern of mitochondria within the embryo.  相似文献   

18.
19.
The posterior-vegetal cytoplasm (PVC) of fertilized ascidian eggs plays important roles in embryo development. It has been reported that some maternal RNAs are localized to the PVC. We identified four novel type I postplasmic mRNAs that are localized to the PVC through the use of data from a cDNA project of maternal mRNAs in the eggs of Halocynthia roretzi (MAGEST database). The mRNAs are HrGLUT, HrPEN-1, and HrPEM-3, which show similarity to a glucose transporter, a g1-related protein, and Ciona pem-3, respectively; and HrPEN-2, with no similarity. Maternal mRNAs of all four genes were identically localized to the PVC after ooplasmic segregation. During cleavage, they were concentrated in the centrosome-attracting body (CAB) and were then segregated into the small blastomeres located at the posterior pole. This localization pattern is common to all known type I postplasmic mRNAs found so far. HrGLUT, HrPEN-1, and HrPEM-3 were expressed zygotically in various tissues later in embryogenesis: HrGLUT and HrPEM-3 in the mesenchyme and nervous system, and HrPEN-1 in the ectodermal cells.  相似文献   

20.
Wnt proteins play important roles in many developmental events. Wnts are divided into two groups according to biological function. The Wnt-5a class proteins function in morphogenetic movement during embryogenesis. Previously, a Wnt-5 homolog has been isolated from the ascidian, Halocynthia roretzi. HrWnt-5 is expressed in the notochord until the tail-bud stage, implying a role in the notochord. In this study, the function of HrWnt-5 was investigated. When HrWnt-5 mRNA was injected into fertilized eggs, the embryos showed morphologic defects at around the neurula stage. The anterior-posterior axis was shorter than in control embryos. These defects were caused by the abnormal movement of notochord cells. However, the overexpression of HrWnt-5 mRNA did not affect the differentiation of tissues, suggesting that HrWnt-5 solely regulates the morphogenetic movement. Although endogenous HrWnt-5 is expressed in the notochord, the overexpression of HrWnt-5 mRNA caused the defects, suggesting that the amount of HrWnt-5 mRNA in the notochord is strictly regulated. These results suggest that HrWnt-5 regulates the morphogenetic movement of notochord cells during ascidian embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号