首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

2.
In the presence of porcine aortic endothelial cytosol, soluble guanylyl cyclase purified from bovine lung was activated by L-arginine up to 2.5-fold, with an EC50 of about 6 microM. This activation was dependent on NADPH and Ca2+. The EC50 for Ca2+ was about 60 nM. No effect of L-arginine on guanylyl cyclase was observed when the cytosolic proteins were heat-denaturated. The effect of L-arginine was inhibited by NG-monomethyl-L-arginine and hemoglobin. These results indicate that endothelial cells contain a cytosolic enzyme which is directly or indirectly regulated by Ca2+ and converts L-arginine into a compound which in stimulating soluble guanylyl cyclase behaves similar to endothelium-derived relaxing factor.  相似文献   

3.
B Mayer  E B?hme 《FEBS letters》1989,256(1-2):211-214
In a fraction of cytosolic proteins from bovine lung, soluble guanylyl cyclase was concentration-dependently stimulated by L-arginine but not by D-arginine. Stimulation was up to 20-fold with an EC50 of about 3 x 10(-5) M. Activation of guanylyl cyclase by L-arginine was dependent on NADPH (EC50 about 5 x 10(-7) M) and Ca2+ (EC50 about 1.4 x 10(-6) M). The activation by L-arginine was inhibited by NG-monomethyl-L-arginine and hemoglobin. The effect of L-arginine was dependent on the protein concentration and was not observed in preparations of purified gyanylyl cyclase. These results suggest that bovine lung contains a Ca2+-regulated enzyme or enzyme system which converts L-arginine into an activator of soluble guanylyl cyclase.  相似文献   

4.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

5.
Many of the physiological effects of the signaling molecule nitric oxide are mediated by the stimulation of the NO-sensitive guanylyl cyclase. Activation of the enzyme is achieved by binding of NO to the prosthetic heme group of the enzyme and the initiation of conformational changes. So far, the rate of NO dissociation of the purified enzyme has only been determined spectrophotometrically, whereas the respective deactivation, i.e. the decline in enzymatic activity, has only been determined in cytosolic fractions and intact cells. Here, we report on the deactivation of purified NO-sensitive guanylyl cyclase determined after addition of the NO scavenger oxyhemoglobin or dilution. The deactivation rate corresponded to a half-life of the NO/guanylyl cyclase complex of approximately 4 s, which is in good agreement with the spectrophotometrically measured NO dissociation rate of the enzyme. The deactivation rate of the enzyme determined in platelets yielded a much shorter half-life indicating either partial damage of the enzyme during the purification procedure or the existence of endogenous deactivation accelerating factors. YC-1, a component causing sensitization of guanylyl cyclase toward NO, inhibited deactivation of guanylyl cyclase, resulting in an extremely prolonged half-life of the NO/guanylyl cyclase complex of more than 10 min. The deactivation of an ATP-utilizing guanylyl cyclase mutant was almost unaffected by YC-1, indicating the existence of a special structure within the catalytic domain required for YC-1 binding or for the transduction of the YC-1 effect. In contrast to the wild type enzyme, YC-1 did not increase NO sensitivity of this mutant, clearly establishing inhibition of deactivation as the underlying mechanism of the NO sensitizer YC-1.  相似文献   

6.
Nitric oxide acts as a widespread signal molecule and represents the endogenous activator of soluble guanylyl cyclase. In endothelial cells and brain tissue, NO is enzymatically formed from L-arginine by Ca2+/calmodulin-regulated NO synthases which require NADPH, tetrahydrobiopterin, and molecular oxygen as cofactors. Here we show that purified brain NO synthase binds to cytochrome c-agarose and exhibits superoxide dismutase-insensitive cytochrome c reductase activity with a Vmax of 10.2 mumol x mg-1 x min-1 and a Km of 34.1 microM. Cytochrome c reduction was largely dependent on Ca2+/calmodulin and cochromatographed with L-citrulline formation during gel filtration. When reconstituted with cytochrome P450, NO synthase induced a moderate Ca(2+)-independent hydroxylation of N-ethylmorphine. NO synthase also reduced the artificial electron acceptors nitro blue tetrazolium and 2,6-dichlorophenolindophenol. Cytochrome c, 2,6-dichlorophenolindophenol, and nitro blue tetrazolium inhibited NO synthase activity determined as formation of L-citrulline from 0.1 mM L-arginine in a concentration-dependent manner with half-maximal effects at 166, 41, and 7.3 microM, respectively. These results suggest that NO synthase may participate in cellular electron transfer processes and that a variety of electron-acceptors may interfere with NO formation due to the broad substrate specificity of the reductase domain of NO synthase.  相似文献   

7.
In Dictyostelium discoideum extracellular cAMP stimulates guanylyl cyclase and phospholipase C; the latter enzyme produces Ins(1,4,5)P3 which releases Ca2+ from internal stores. The following data indicate that intracellular Ca2+ ions inhibit guanylyl cyclase activity. 1) In vitro, Ca2+ inhibits guanylyl cyclase with IC50 = 41 nM Ca2+ and Hill-coefficient of 2.1. 2) Extracellular Ca2+ does not affect basal cGMP levels of intact cells. In electro-permeabilized cells, however, cGMP levels are reduced by 85% within 45 s after addition of 10(-6) M Ca2+ to the medium; halfmaximal reduction occurs at 200 nM extracellular Ca2+. 3) Receptor-stimulated activation of guanylyl cyclase in electro-permeabilized cells is also inhibited by extracellular Ca2+ with half-maximal effect at 200 nM Ca2+. 4) In several mutants an inverse correlation exists between receptor-stimulated Ins(1,4,5)P3 production and cGMP formation. We conclude that receptor-stimulated cytosolic Ca2+ elevation is a negative regulator of receptor-stimulated guanylyl cyclase.  相似文献   

8.
The particulate form of guanylyl cyclase from bovine rod outer segments has been solubilized and purified to near homogeneity by a combination of liquid chromatography and native gel electrophoresis. The procedure enriches enzyme activity 6700-fold from rod outer segment extracts to a final specific activity of 17.5 mumol/min per mg (when assayed with Mn-GTP as substrate). Purified preparations of guanylyl cyclase contain a single glycoprotein with an apparent molecular mass of 60,000 Da and a native isoelectric point of 7.6. Although crude or partially purified enzyme activity is modulated by sub-micromolar concentrations of Ca2+, the fully purified enzyme is insensitive to this cation. However, the purified enzyme remains sensitive to nitrovasodilators, being stimulated over 10-fold by sodium nitroprusside. These data suggest that retinal rods contain a unique isoform of guanylyl cyclase.  相似文献   

9.
A neuronal type Ca2+ stimulated nitric oxide synthase was earlier reported by us to be present in the protozoan parasite Leishmania donovani. As part of nitric oxide-cyclic GMP transduction signaling operative in higher eukaryotes and involved in the long-term potentiation, a soluble guanylyl cyclase has also been detected in this lower eukaryote. However, detailed biochemical characterization revealed the enzyme to be Ca2+ modulated and unstimulated by nitric oxide donors as opposed to higher eukaryotes. The possible role of intracellular Ca2+ level in the regulation of guanylyl cyclase activity as well as L. donovani infectivity was explored by measuring the intracellular survival of the parasites in mammalian macrophages after treatments, which decrease or elevate the intracellular Ca2+. Parasites loaded with intracellular Ca2+ chelators displayed significantly decreased infectivity and cyclic GMP level. In contrast, pretreatment with Ca2+ ionophores, which elevated Ca2+ levels in L. donovani, significantly enhanced the cyclic GMP level as well as the infectivity of the parasites. Moreover, treatment with selective inhibitors of soluble guanylyl cyclase also reduced infectivity, even in cases of calcium ionophore-treated parasites. The gene encoding the soluble guanylyl cyclase was cloned, sequenced and over expressed in bacterial system. The recombinant protein showed enzyme characteristics similar to that obtained in L. donovani promastigote cytosol. Together these results suggest a possible link between guanylyl cyclase, intracellular Ca2+ content and parasite infectivity.  相似文献   

10.
Guanylyl cyclase from bovine rod outer segments was solubilized using Triton X-100 and a high concentration of KCl, and its regulation was studied. The efficiency of solubilization was about 50-90% of total activity. When the Ca2+ content was lowered (less than 80 nM), guanylyl cyclase was activated about 2-fold. In the presence of higher concentrations of Ca2+ (greater than 140 nM), the activity was decreased. The regulation by Ca2+ was also demonstrated with solubilized preparations. In the presence of 186 nM Ca2+ which inhibited guanylyl cyclase, La3+ activated the enzyme about 2-fold, suggesting that the Ca2(+)-binding protein similar to other Ca2(+)-binding proteins associates with guanylyl cyclase regulation. Sodium nitroprusside and nitric oxide which are activators of soluble guanylyl cyclase in other tissues also activated the retinal guanylyl cyclase. Maximum activation by sodium nitroprusside was 20-fold using Mg2+ as a cofactor. Activation by nitric oxide and related compounds suggests that retinal guanylyl cyclase contains a heme prosthetic group that may participate in a novel regulatory mechanism for this enzyme.  相似文献   

11.
The role of nitric oxide (NO) in the stimulation of soluble guanylyl cyclase (sGC) is well established, but the mechanism by which the enzyme is inactivated during the prolonged NO stimulation has not been characterized. In this paper we studied the interactions between NO and intracellular Ca(2+) in the control of sGC in rat anterior pituitary cells. Experiments were done in cultured cells, which expressed neuronal and endothelial NO synthases, and in cells with elevated NO levels induced by the expression of inducible NO synthase and by the addition of several NO donors. Basal sGC-dependent cGMP production was stimulated by the increase in NO levels in a time-dependent manner. In contrast, depolarization of cells by high K(+) and Bay K 8644, an L-type Ca(2+) channel agonist, inhibited sGC activity. Depolarization-induced down-regulation of sGC activity was also observed in cells with inhibited cGMP-dependent phosphodiesterases but not in cells bathed in Ca(2+)-deficient medium. This inhibition was independent from the pattern of Ca(2+) signaling (oscillatory versus nonoscillatory) and NO levels, and was determined by averaged concentration of intracellular Ca(2+). These results indicate that inactivation of sGC by intracellular Ca(2+) serves as a negative feedback to break the stimulatory action of NO on enzyme activity in intact pituitary cells.  相似文献   

12.
Nitric Oxide Synthase in Bovine Superior Cervical Ganglion   总被引:1,自引:0,他引:1  
Abstract: We investigated the mechanism of increases in cyclic GMP levels in bovine superior cervical ganglion (SCG) in response to muscarinic receptor stimulation. Acetylcholine increased cyclic GMP levels in SCG. This increase was inhibited by N G-methyl-L-arginine (NMA), and the inhibition was reversed by L-arginine. Soluble nitric oxide (NO) synthase was partially purified from bovine SCG using 2',5'-ADP Sepharose affinity chromatography. The resulting enzyme activity was Ca2+/calmodulin dependent and required NADPH and tetrahydrobiopterin as co-factors. Superoxide dismutase protected and oxyhemo-globin blocked the effect of NO formed by the enzyme. NMA inhibited the activity of the NO synthase. In western blots, an antibody generated against rat brain NO synthase specifically recognized the NO synthase from SCG as a 155-kDa protein band. Immunohisto chemistry using the same antibody demonstrated that NO synthase was localized in postganglionic neuronal cell bodies of the SCG. Immunofluorescent labeling showed that some of the cells staining positive for dopamine-β-hydroxylase also contained NO synthase. Thus, NO is synthesized in specific cells within bovine SCG, including sympathetic neurons, and mediates the acetylcholine-induced stimulation of soluble guanylyl cyclase.  相似文献   

13.
Nitric oxide (NO) diffuses as short-lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at the neuromuscular junction (NMJ) of Drosophila melanogaster larvae. Application of NO donors induced cGMP immunoreactivity in the presynaptic terminals but not the postsynaptic muscle fibers at an identified NMJ. The NO-induced cGMP immunoreactivity was sensitive to a specific inhibitor (ODQ) of the sGC. Since presynaptic terminals which were surgically isolated from the central nervous system are capable of synthesizing cGMP, we suggest that an NO-sensitive guanylyl cyclase is present in the terminal arborizations. Using a fluorescent dye that is known to stain recycling synaptic vesicles, we demonstrate that NO donors and membrane permeant cGMP analogues cause vesicle release at the NMJ. Moreover, the NO-induced release could be blocked by the specific inhibitor of the sGC. A destaining of synaptic terminals after NO exposure in Ca2+-free solution in the presence of cobalt chloride as a channel blocker suggested that NO stimulates Ca2+-independent vesicle release at the NMJ. The combined immunocytochemical and exocytosis imaging experiments imply the involvement of cGMP and NO in the regulation of vesicle release at the NMJ of Drosophila larvae.  相似文献   

14.
A method for expression and purification of active cytosolic heterodimeric histidine (His)-tagged guanylyl cyclase of the α1/β1 isoform has been developed using recombinant baculovirus-transfected insect cells. Confirmation of expression of active cyclase was obtained by both Western analysis and enzymatic activity. A His tag on the COOH-terminus of the α1 and β1 subunits allowed rapid purification of the heterodimeric form of guanylyl cyclase in a single affinity step using a nickel column. A second gel-filtration step was applied to reconstitute into the complex heme, a required cofactor. This was confirmed spectroscopically by absorbance in the Soret region. Like enzyme purified from tissue, the activity of recombinant guanylyl cyclase was increased by protoporphyrin IX and inhibited by both Zn- and Sn-protoporphyrin. The method described here should provide a general approach for the expression and purification of alternate forms of cytosolic guanylyl cyclase and facilitate mechanistic and structural studies of this important family of enzymes. Furthermore, the procedure demonstrates the utility of the His-tag system to purify multimeric proteins.  相似文献   

15.
Calcium (Ca2+) and cyclic GMP (cGMP) subserve antagonistic functions that are reflected in their coordinated reciprocal regulation in physiological systems. However, molecular mechanisms by which Ca2+ regulates cGMP-dependent signaling remain incompletely defined. In this study, the inhibition of recombinant nitric oxide (NO)-stimulated soluble guanylyl cyclase (SGC) by Ca2+ was demonstrated. The alpha- and beta-subunits of recombinant rat SGC were heterologously coexpressed in HEK 293 cells which do not express NO synthase, whose Ca2+-stimulated activity can confound the effects of that cation on SGC. Ca2+ inhibited basal and NO-stimulated SGC in a concentration- and guanine nucleotide-dependent fashion. This cation inhibited SGC in crude cell extracts and immunopurified preparations. Ca2+ lowered both the Vmax and Km of SGC via an uncompetitive mechanism through direct interaction with the enzyme. In intact HEK 293 cells, increases in the intracellular Ca2+ concentration induced by ionomycin, a Ca2+ ionophore, and thapsigargin, which releases intracellular stores of that cation, inhibited NO-stimulated intracellular cGMP accumulation. Similarly, carbachol-induced elevation of the intracellular Ca2+ concentration inhibited NO-stimulated intracellular cGMP accumulation in HEK 293 cells. These data demonstrate that SGC behaves as a sensitive Ca2+ detector that may play a central role in coordinating the reciprocal regulation of Ca2+- and cGMP-dependent signaling mechanisms.  相似文献   

16.
In rabbit parotid acinar cells, the muscarinic cholinergic agonist methacholine induced an increase in the intracellular Ca(2+) concentration and provoked nitric oxide (NO) generation. Ca(2+)-mobilizing reagents such as thapsigargin and the Ca(2+) ionophore A23187 mimicked the effect of methacholine on NO generation. Methacholine-induced NO generation was inhibited by the removal of extracellular Ca(2+). Immunoblot analysis indicated that the antibody against the neuronal type of nitric oxide synthase (NOS) cross-reacted with NOS in the cytosol of rabbit parotid gland cells. Immunofluorescence testing showed that neuronal NOS is present in the cytosol of acinar cells but less in the ductal cells. NOS was purified approximately 8100-fold from the cytosolic fraction of rabbit parotid glands by chromatography on Sephacryl S-200, DEAE-Sephacel, and 29,59-ADP-Sepharose. The purified NOS was a NADPH- and tetrahydroxybiopterin-dependent enzyme and was activated by Ca(2+) within the physiological range in the presence of calmodulin. These results suggest that NO is generated by the activation of the neuronal type of NOS, which is regulated in rabbit parotid acinar cells by the increase in intracellular Ca(2+) levels induced by the activation of muscarinic receptors.  相似文献   

17.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

18.
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.  相似文献   

19.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

20.
D Koesling  G Schultz  E B?hme 《FEBS letters》1991,280(2):301-306
The cyclic GMP-forming enzyme guanylyl cyclase exists in cytosolic and in membrane-bound forms differing in structure and regulations. Determination of the primary structures of the guanylyl cyclases revealed that the cytosolic enzyme form consists of two similar subunits and that membrane-bound guanylyl cyclases represent enzyme forms in which the catalytic part is located in an intracellular, C-terminal domain and is regulated by an extracelluar, N-terminal receptor domain. A domain of 250 amino acids conserved in all guanylyl cyclases appears to be required for the formation of cyclic nucleotide, as this homologous domain is also found in the cytosolic regions of the adenylyl cyclase. The general structures of guanylyl cyclases shows similarities with other signal transducing enzymes such as protein-tyrosine phosphatases and protein-tyrosine kinases. which also exist in cytosolic and receptor-linked forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号