首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White clover (Trifolium repens L.) stolons become buried inthe field. It was observed that this also occurred in the greenhousewhere the accepted mechanisms of burial, treading by livestockand earthworm casting, did not occur. It was also observed thatthe crown of seedling T. repens plants become closely appressedto the soil. Experiments showed that, regardless of varietyof T. repens or depth of planting, all seedling hypocotyls firstlift the cotyledons clear of the soil, then ‘ contract’towards the soil until the cotyledons are in contact with orbelow the soil surface. Auxanometers were used to measure therate and extent of this contraction and were also attached tostolon nodes in experiments which showed that stolons move downwardsrelative to the soil surface and that the speed and extent ofthis duration varied with soil type. A further experiment showedthat only rooted nodes show this behaviour. The force exertedby the contraction of nodal roots was estimated experimentallyas 0.21 N g-1fresh root. A mechanism for the root contraction,based on examination of root anatomy of seedling tap-roots andnodal roots, is suggested. These experiments provide evidencefor root contraction in T. repens which may lead to stolon burial.The importance of this to T. repens as a pasture species andas a means of further improving T. repens varieties is discussed.Copyright 1999 Annals of Botany Company White clover, Trifolium repens, L., stolon, seedling, burial, root, nodes, nodal, force, contractile, soil resistance, pasture, phloem, fibres.  相似文献   

2.
Growth and N-accumulation rates in leaves, stolons and rootsof individual white clover plants were studied in three experimentsusing two methods. In a growth chamber experiment, the relativedifferences between tissues were found to be almost constantfor a wide range of clover plant sizes. The stolon dry matter(DM) production was 56% and the root DM production 40% of theDM production in leaves. The N yield of stolons was 30% whileN yield in roots was 34% of N yield in leaves. The effect ofN application on these relations was investigated in a glasshouseexperiment. Application of N reduced the root:shoot N ratiofrom 0.50 to 0.28, whereas the stolon+root:leaf N ratio (i.e.for abovevs.below cutting-height tissues) was only reduced from0.97 to 0.80. In a field trial with two contrasting N regimes,growth and N accumulation were measured on individual cloverplants. Dinitrogen fixation was estimated by15N isotope dilutionbased on analysis of leaves-only or by including stolons. Usingleaves-only did not affect the calculation of percentage ofclover N derived from N2fixation (% Ndfa) since the15N enrichmentwas found to be uniform in all parts of the clover. A correctionfactor of 1.7 to account for N in below cutting-height tissueis suggested when N2fixation in white clover is estimated byharvesting the leaves only.Copyright 1997 Annals of Botany Company Leaves; N accumulation; N2fixation; 15N isotope dilution; pastures; roots; root/shoot ratio; stolons; Trifolium repensL.; white clover  相似文献   

3.
The fourth fully expanded leaf on the main stolon of white cloverplants was exposed to 14CO2. Thereafter, quantitative and fractionalanalysis of the partitioning, storage and remobilization afterdefoliation of the 14C labelled assimilate was sequentiallyconducted over a 2- to 3-week period. In undefoliated plants, most 14C reached its final destinationwithin 24 h of feeding. Forty percent of assimilated 14C waslost through respiration, while the rest was exported, predominantlyto meristems, but also to roots, stolons and leaves. The 14Cinitially translocated to meristems was subsequently recoveredin stolon and leaf tissue as the plants matured. Approximately 10% of assimilated 14C was invested into long-termstorage in roots and stolons. These reserves were remobilizedafter both partial and total defoliation, and a portion of theremobilized 14C was incorporated into new growth, Partly defoliatedplants regrew more rapidly than totally defoliated plants, butmore 14C reserve depletion took place in the totally defoliatedtreatment. Reserve depletion took place from both stolons androots, but stolon reserves were preferentially utilized. Bothhigh and low molecular weight storage compounds were involved. Trifolium repens, white clover, assimilate partitioning, storage, remobilization, defoliation  相似文献   

4.
A quantitative analysis of the 14C-labelled assimilate suppliedby the expanded leaves on the primary shoot to growing leaves,stem, lateral shoots (branches or stolons) and roots in redand white clover was conducted during vegetative growth. Stem growth of the primary shoot was inhibited in both cloversand utilized no energy resources. The growing leaves at theprimary shoot apex of white clover imported 4 per cent of theshoot's assimilate compared with 10 per cent in red clover.At the basal end of the primary shoot, the tap root of whiteclover imported 16 per cent of the shoot's assimilate comparedwith 22 per cent in red clover. Branches in red clover and stolonsin white clover were by far the largest sinks for primary shootassimilate, importing 39 per cent and 63 per cent of the labelledassimilate, respectively. Analyses of the translocation of assimilate from individualprimary shoot leaves demonstrated that in both clovers olderleaves exported more of their assimilate to branches or stolons,whereas younger leaves exported more of their assimilate toroots, and possibly in white clover, to growing leaves at thetip of the shoot. Of the labelled assimilate exported to branchesor stolons, each primary shoot leaf exported preferentiallyto the branch or stolon in its own axil, but in addition exportedsubstantial quantities of assimilate to all other axillary shoots,particularly those arising from basal axils where the subtendingleaf had died. Trifolium repens, Trifolium pratense, red clover, white clover, assimilate partitioning, perennation  相似文献   

5.
Single plants of white clover (Trifolium repens) were establishedfrom stolon cuttings rooted in acid-washed silver sand. Allplants were inoculated with Rhizobium trifolii, and receivednutrient solution containing 0·5 mg 15N as either ammoniumor nitrate weekly for 12 weeks (i.e. 6 mg 15N in total). Plantswere then leniently defoliated or left intact, and the labelledN supply was replaced with unlabelled N. Lenient defoliationremoved fully expanded leaves only, leaving immature leaveswhich accounted for 50–55% of the total; growing pointnumbers were not reduced. Nodules, leaves and growing pointswere counted over the following 21 d period, and d. wts, N contents,and 15N enrichments of individual plant organs were determined. Defoliated plants had fewer nodules, but numbers of growingpoints were unaffected by defoliation. The rates of both leafemergence and expansion were accelerated in defoliated plants;in consequence the number of young leaves remained less thanin intact plants until day 21. Total dry matter (DM) and N accumulationwere less in defoliated plants, and a greater proportion oftotal plant DM was invested in roots. About 97 % of plant totalN was derived from fixed atmospheric N, but there was incompletemixing of fixed and mineral N within the plant. Relatively moremineral N was incorporated into roots, whereas there was relativelymore fixed N in nodules. There was isotopic evidence that Nwas remobilized from root and stolon tissue for leaf regrowthafter defoliation; approximately 2 % of plant N turned overdaily in the 7-d period after defoliation, and this contributedabout 50% of the N increment in leaf tissue. White clover, Trifolium repens L. cv. SI84, lenient defoliation, N economy, regrowth, N remobilization  相似文献   

6.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

7.
TURNER  L. B. 《Annals of botany》1990,65(3):285-290
Water potential, osmotic potential, pressure potential and relativewater content were measured in stolons and leaves of white cloverplants grown under a range of conditions of water supply andevaporative demand. The importance of adventitious roots fromthe nodes was examined. Gradients along stolons were alwaysextremely small, of the order of only 01 MPa. Stolon up waterpotential was representative of plant water status regardlessof stolon length, presence/absence of nodal roots, degree ofwater stress and evaporative demand. It is concluded that waterconduction along stolons was very good. Gradients were foundto exist along petioles; they may have a greater resistanceto water flow than stolons. The relationship between water fluxand stem anatomy, and the importance of differential flow ratesthrough stolons and petioles to plant behaviour during waterstress, are discussed. Trifolium repens L., white clover, water relations  相似文献   

8.
The growth, morphology and carbon allocation patterns of F1progeny white clover (Trifolium repens L.) plants selected foreither low (‘LBF’) or high (‘HBF’) frequencyof stolon branching were compared in two controlled-environmentexperiments. Selections from within both a small-leaved (‘GrasslandsTahora’) and a large-leaved (‘Grasslands Kopu’)clover cultivar were compared, and plants were grown under arelatively lenient defoliation treatment (expt 1) or under threelevels of defoliation seventy (expt 2). Carbon allocation patternswere measured by 14CO2 pulse-chase labelling using fully unfoldedleaves on the main (parent) stolon. LBF and HBF displayed consistent differences in the selectedcharacter though, within cultivars, the difference between selectionswas most pronounced for Kopu. The selections developed fundamentallydifferent branching structures resulting from differences inbranching frequency, with total branch weight per plant averaging122 mg for LBF and 399 mg for HBF (mean of both experiments).More C moved from parent stolon leaves to branches in HBF thanin LBF (mean 22.6% vs. 15.1% respectively of the 14C exportedfrom source leaves). More C also moved to stolon tissue in HBF,but, counterbalancing this and the difference in allocationto branches, less moved to developing leaves and roots on theparent stolon itself compared to LBF. However, the total weightof developing leaves and roots per parent stolon was generallygreater in HBF than in LBF, probably reflecting greater C importby these sinks from the higher number of branches present perplant in the former selection. HBF plants were consistentlylarger at harvest than LBF plants. There were no defoliationtreatment x selection interactions in C allocation patternsin expt 2. The implications of the results for plant performancein grazed pastures are discussed. Branching, carbon translocation, defoliation, growth, morphology, Trifolium repens, white clover  相似文献   

9.
Although it is well established that carbon reserves contributeto shoot regrowth of leguminous forage species, little informationis available on nitrogen reserves except in Medicaqo sativaL. and Trifolium subterraneum L. In this study, reserves werelabelled with 15N to demonstrate the mobilization of endogenousnitrogen from roots and stolons to regrowing leaves and newstolons during 24 d of regrowth in white clover (Thfolium repensL.). About 55% and 70%, respectively, of the nitrogen contentsof these organs were mobilized to support the regrowth of leaves.During the first 6 d, nitrogen in regrowing leaves came mainlyfrom N reserves of organs remaining after defoliation. Afterthese first 6 d of regrowth, most of the shoot nitrogen wasderived from exogenous nitrogen taken up while the contributionof nitrogen reserves decreased. After defoliation, the buffer-solubleprotein content of roots and stolons decreased by 32% duringthe first 6 d of regrowth. To identify putative vegetative storageproteins, soluble proteins were separated using SDS-PAGE ortwo-dimensional electrophoresis. One protein of 17.3 kDa instolons and two proteins of 15 kDa in roots seemed to behaveas vegetative storage proteins. These three polypeptides, initiallyfound at high concentrations, decreased in relative abundanceto a large extent during early regrowth and then were accumulatedagain in roots and stolons once normal growth was re-established. Key words: White clover, regrowth, 15N-labelled, vegetative storage proteins, electrophoresis  相似文献   

10.
The objectives of this study were to identify the vascular connectionsfrom roots to upper axial bundles in one genotype ofTrifoliumrepensL. ‘Grasslands Kopu’, identify pathways followedby the transpiration stream, and establish whether these pathwayscould account for previously-observed patterns of clonal integration.The study provides new information on vascular connections betweenroot and parent and branch stolons at nodes possessing botha root and a branch, and to the first two leaves on branch stolons.A nodal root is connected to the lower nearside axial bundleof the parent stolon but to both lower and upper nearside axialbundles of the branch. Upper sympodia provide a long-distancetransport pathway from a parent stolon to the apex of branchstolons. Lower sympodia are functionally different, providingshort-distance transport to structures in close proximity tothe source root. This is consistent with observed patterns ofclonal integration inT. repensand may provide a simple architecturalmechanism facilitating foraging.Copyright 1998 Annals of BotanyCompany Acid fuchsin, clonal integration, foraging, physiological integration, serial sections, white clover,Trifolium repens(L.), vascular architecture, xylem transport.  相似文献   

11.
A period of growth under shade netting in the glasshouse allowedthe cultivation of white clover stolons with an accumulationof undeveloped axillary buds similar to that often found onstolons from grass/clover swards. The subsequent capacity ofthese nodes to develop branches under different circumstanceswas investigated in three experiments. Removal of the laminaeand petioles subtending sets of four buds along a stolon reducedthe rate at which branches were initiated from the buds. Treatmentsin which petioles, or petioles plus laminae, were retained initiatedbranches more quickly. Shading the stolons reduced both therate of initiation and the percentage of buds which developed,unless both petioles and laminae were retained. There was someevidence that conditions applied to individual buds may actin the same way as the same conditions applied to sets of fourbuds and that illuminated nodes may depress the performanceof neighbouring shaded notes. Fewer buds developed at older nodes than at younger nodes duringthe summer, but during the autumn younger buds initially developedmore slowly than older buds. This suggests that buds can developat a younger nodal age in summer than in winter. When leafless stolons were cut up into component internodesbuds developed faster than on intact stolons, provided the budwas located at the end of the internode nearest the main stolongrowing point. If the bud was at the other end, branch developmentwas slower than on intact stolons. The results are discussedin relation to clover growth in sward conditions. White clover, Trifolium repens, axillary bud development, branching, growing points, defoliation, shading  相似文献   

12.
HAYCOCK  R. 《Annals of botany》1982,50(2):161-165
Trifolium repens has two types of root, one derived from theseed and the adventitious roots derived from the stolon nodes.It has been suggested that these two systems have differentpotentials for supporting growth. This paper presents a comparisonof plants grown on single seedling or adventitious roots anddemonstrates that although the shoot: root ratios for the twotypes differ this may be explained by differing shoot morphologies.Comparison of the lamina: root ratios for the two types of plantproduced no statistically significant differences and it isproposed that the two types of root system do not differ intheir relationship with leaf growth. A mechanism for large diameter‘tap’ root formation is suggested. white clover, Trifolium repens L., adventitious roots, seedling roots, shoot: root ratio  相似文献   

13.
Detailed analysis of the interrelationships between sourcesof photosynthate production and sites of utilization in thetaxonomically closely related species Ranunculus bulbosus L.and R. repens L. showed that leaves whether present on rosette,stem, or stolon had similar levels of 14CO2-fixation but thepattern of distribution of radiocarbon to the rest of the plantdiffered. Fruits of R. bulbosus had a lower fixation rate thanleaves but were characterized by total retention of the fixedradiocarbon. Rosette leaves of R. bulbosus supplied the youngleaves, developing apices in the rosette, roots, and corms,whereas the labelled assimilates from cauline leaves were evenlydistributed between reproductive and vegetative parts. The cormwas the major sink both at the flowering and fruiting stages.When plants were treated with 14CO2 in the field even higherlevels of radiocarbon moved into the corm than in comparableexperiments under greenhouse conditions. The rosette leaf ofR. repens exported mainly to actively growing stolons in plantswith many stolons bearing rooted ramets although growth of astolon was also substantially supported by photosynthates producedby its own ramets. A proportion of the radiocarbon fixed byleaves of mature ramets was exported and moved in a predominantlyacropetal direction into the stolon apex, stolon axis, and youngramets of the same stolon. The stock in R. repens had a muchlower demand for assimilates than the corm in R. bulbosus. The results are consistent with the concept that R. bulbosusoperates a conservative policy involving the replacement ofthe parent in situ by a daughter from the corm, coupled withextensive fruit production. In R. repens the emphasis is onlateral spread and exploitation of substantial areas of groundby vegetative spread and replacement of the parent by daughtersmany of which may occupy sites some distance from the parent.  相似文献   

14.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

15.
Norm, I. B. 1987. Requirements for floral induction in contrastingwhite clover (Trifolium repens) populations.—J. exp. Bot.38: 900–907. Floral initiation and development of four contrasting whiteclover (Trifolium repens) populations was examined after differentinduction treatments (16 h, 5 ?C and 8 h, 5 ?C. The number of reproductive stolons and of reproductive budsper stolon was increased after cold induction. Varietal differencesin response to daylength were large; some varieties respondingbetter to a long day cold period, others to a short day coldperiod while one variety required no induction at all. Whetherthe daylength effect was due to photoperiod, irradiance or totheir interaction was not known. The induction periods had a subsequent effect upon pedunclelength, floret and ovule number. Short days and chilling reducedpeduncle length but increased ovule number, whereas long daysand chilling tended to increase floret number. Nectar concentrationwas highest after short day induction. Key words: White clover, floral initiation, floral induction  相似文献   

16.
Dunlop, J., Knighton, M. V. and White, D. W. R. 1988. Ion transportand the effects of acetic acid in white clover. I. Phosphateabsorption.—J. exp. Bot. 39: 79–88. The effect of acetic acid on phosphate absorption by white clovertissue has been examined. At 1·0 mol m3 acetic acid phosphateabsorption by roots of intact plants was stimulated by 36% (P< 0.001). At 5.0 and 10 mol m–3 acetic acid there wasmarked inhibition of absorption by both suspension culturesof cells and the roots of intact plants. The inhibition waspH dependent with decreasing pH causing increased inhibition.Acetic acid caused changes in the membrane electropotential(E) with concentrations of 2·0 mol m–3 or lesscausing persistent polarization whereas at 5·0 mol m–3and higher concentrations the polarization was followed by agreater depolarization. Intracellular pH as measured by thefluorescence of fluorescein was lowered by acetic acid. Calculationsindicate that for white clover roots the proton motive force(pmf) appears to provide sufficient energy for phosphate absorption.It is proposed that acetic acid influences phosphate absorptionthrough its dependence on proton cotransport and that changesin J E affect the rate of phosphate absorption because of thedependence of the pmf on E. Key words: Phosphate absorption, intracellular pH, acetic acid, proton motive force, Trifolium repens, membrane electropotential  相似文献   

17.
The net efflux of H+ from lucerne (Medicago saliva L.), redclover (Trifolium pratense L.) and white clover (Trifolium repensL.) growing in flowing solution culture and dependent upon symbioticfixation of atmospheric N, was measured over a 75 d experimentalperiod. Considerable and rapid increases in acidity of the nutrientsolution of up to 1.45 pH units were recorded when the pH wasriot held constant over a 30 h period. There was little differencein H+ efflux when solution pH was held constant at 4.75, 5.75or 6.75, but there was an immediate cessation when it was adjustedto 3.75. Differences in the daily net efflux of H+ closely followedthe pattern of daily differences in incoming radiation, andthere was also evidence of a diurnal pattern of H+ efflux. Althoughthere were initially distinct differences between the speciesin the calculated rate of net H+ efflux (µg H+ g–1dry shoot d), by day 75 these had diminished. In allspecies, however, the maximum rate of efflux per unit of shootsoccurred during the earlier rapid phases of growth. The measuredefflux of H+ was well equated with the plant content of excesscations (as measured by ash alkalinity) and, on average, theratio of acidity produced to N assimilated (expressed as anequivalent) was 0-24. Medicago sativa L., Trifolium pratense L., Trifolium repens L., lucerne, red clover, white clover, acidification, cation/anion balance, flowing solution culture, H+ efflux, nitrogen fixation  相似文献   

18.
The effect of concurrent salinity (0-60 mM NaCl) and rootzonehypoxia (flooding for up to 15 d) on shoot and root growth andshoot ion concentrations of six species of Trifolium (T. subterraneumL., T. fragiferum L., T. michelianum Savi., T. isthmocarpumBot., T. purpureum Lois., and T. repens L.), was studied intwo greenhouse experiments. There was a significant salinityx flooding effect for shoot yield but no significant salinityx flooding x species interaction although individual speciesdiffered significantly (P < 0·001) in their growthresponse to the saline or flooded conditions separately. Concentrationsof Na and Cl in the shoots of all species increased with increasingperiods of saline flooding and there was a significant salinityx flooding interaction. Sodium and Cl concentrations were significantlyhigher (P < 0·001) in T. purpureum, the species inwhich shoot growth was most depressed by saline flooding, thanother species. In T. michelianum, T. fragiferum and T. repens,fresh and dry weight of roots increased with flooding underboth saline and non-saline conditions while in T. subterraneumroot growth decreased. A significant proportion of the increasedroot growth in the first three species occurred as new adventitiousroots. These roots had higher percentages of internal gas spaceswithin the root tissue even in the presence of salinity comparedwith roots from non-flooded conditions. There were also significantlymore gas spaces in the total root tissue in T. fragiferum andT. repens under saline-flooding than in roots of T. subterraneum.Electron micrographs of the root cross sections illustratedthe presence of these gas spaces or aerenchyma. Trifolium fragiferum, T. repens and T. michelianum are morelikely to be suited to growth in soils prone to high salinityand to flooding than are T. subterraneum, T. purpureum and T.ishmocarpum.Copyright 1993, 1999 Academic Press Trifolium subterraneum, Trifolium fragiferum, Trifolium michelianum, Trifolium isthmocarpum, Trifolium purpureum, Trifolium repens, salinity, flooding, hypoxia, adventitious roots, aerenchyma, subterranean clover, white clover, strawberry clover, purple clover, balansa clover  相似文献   

19.
By direct somatic embryogenesis in vitro a clone of asepticplantlets can be raised from a single immature embryo of Trifoliumrepens (white clover) within about 6 weeks of pollination. Embryoidsare induced directly from intact zygotic embryonic tissue ona culture medium containing 0·025 or 0·05 mg 1–1BAP and 1·0 g 1–1 yeast extract. Similar directsomatic embryogenesis has also been achieved for Trifolium pratense(red clover) and Medicago sativa (lucerne). Applications ofembryo propagation by direct somatic embryogenesis are discussed,particularly in relation to multiple screening of host genotypesfor analysis of host/pathogen and legume/Rhizobium interactions. Trifolium repens L., Trifolium pratense L., Medicago sativa L., clover, lucerne, tissue culture, embryoid, somatic embryogenesis, legumes  相似文献   

20.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号