首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The process of assisted protein folding, characteristic of members of the heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) molecular chaperone families, is important for maintaining the structural integrity of cellular protein machinery under normal and stressful conditions. Hsp70 and Hsp40 cooperate to bind non-native protein conformations in a process of adenosine triphosphate (ATP)-regulated assisted protein folding. We have analysed the molecular chaperone activity of the cytoplasmic inducible Hsp70 from Trypanosoma cruzi (TcHsp70) and its interactions with its potential partner Hsp40s (T. cruzi DnaJ protein 1 [Tcj1] and T. cruzi DnaJ protein 2 [Tcj2]). Histidine-tagged TcHsp70 (His-TcHsp70), Tcj1 (Tcj1-His) and Tcj2 (His-Tcj2) were over-produced in Escherichia coli and purified by nickel affinity chromatography. The in vitro basal specific ATP hydrolysis activity (ATPase activity) of His-TcHsp70 was determined as 40 nmol phosphate/min/mg protein, significantly higher than that reported for other Hsp70s. The basal specific ATPase activity was stimulated to a maximal level of 60 nmol phosphate/min/mg protein in the presence of His-Tcj2 and a model substrate, reduced carboxymethylated alpha-lactalbumin. In vivo complementation assays showed that Tcj2 was able to overcome the temperature sensitivity of the ydj1 mutant Saccharomyces cerevisiae strain JJ160, suggesting that Tcj2 may be functionally equivalent to the yeast Hsp40 homologue (yeast DnaJ protein 1, Ydj1). These data suggest that Tcj2 is involved in cytoprotection in a similar fashion to Ydj1, and that TcHsp70 and Tcj2 may interact in a nucleotide-regulated process of chaperone-assisted protein folding.  相似文献   

3.
Human beta cells exhibit increased resistance against nitric oxide (NO) radicals as compared with rodent islet cells. Here we tested whether endogenous heat shock protein 70 (hsp70) accounts for the resistance of human cells. Stable transfection of the human beta cell line CM with an antisense hsp70 mRNA-expressing plasmid (ashsp70) caused selective suppression (>95%) of spontaneously expressed hsp70 but not of hsc70 or GRP75 protein. ashsp70 transfection abolished the resistance of CM cells to the NO donors (Z)-1- (2-(2-aminoethyl)-N-(2-ammonioethyl)amino)diazen-1-ium -1,2-diolate and sodium nitroprusside and increased the proportions of necrotic cells 3-5-fold (p < 0.05) and of apoptotic cells about 2-fold (p < 0.01). Re-induction of hsp70 expression by heat shock re-established resistance to NO toxicity. hsp70 did not exert its protective effect at the level of membrane lipid integrity because radical induced lipid peroxidation appeared independent of hsp70 expression. However, after NO exposure only hsp70-deficient cells showed significantly decreased mitochondrial activity, by 40-80% (p < 0.01). These results suggest a key role of hsp70 in the natural resistance of human beta cells against NO induced injury, by preserving mitochondrial function. These findings provide important implications for the development of beta cell protective strategies in type 1 diabetes and islet transplantation.  相似文献   

4.
In mammalian cells, lipid storage droplets contain a triacylglycerol and cholesterol ester core surrounded by a phospholipid monolayer into which a number of proteins are imbedded. These proteins are thought to be involved in modulating the formation and metabolic functions of the lipid droplet. In this study, we show that heat stress upregulates several heat shock proteins (Hsps), including Hsp27, Hsp60, Hsp70, Hsp90, and Grp78, in primary and differentiated adipocytes. Immunostaining and immunoblotting data indicate that among the Hsps examined, only Hsp70 is induced to redirect to the lipid droplet surface in heat-stressed adipocytes. The thermal induction of Hsp70 translocation to lipid droplet does not typically happen in a temperature- or time-dependent manner and occurs abruptly at 30-40 min and rapidly achieves a steady state within 60 min after 40 degrees C stress of adipocytes. Though Hsp70 is co-localized with perilipin on the lipid droplets in stressed adipocytes, immunoprecipitation experiments suggest that Hsp70 does not directly interact with perilipin. Alkaline treatments indicate that Hsp70 associates with the droplet surface through non-hydrophobic interactions. We speculate that Hsp70 might noncovalently associate with monolayer microdomains of the lipid droplet in a manner similar to its interaction with lipid bilayer moieties composed of specific fatty acids. As an acute and specific cellular response to the heat stimulation, accumulation of Hsp70 on adipocytes lipid droplets might be involved in stabilizing the droplet monolayer, transferring nascent proteins to the lipid droplets, or chaperoning denatured proteins on the droplet for subsequent refolding.  相似文献   

5.
Many of viral and eukaryotic proteins are required for signal transduction and regulatory functions which undergo a lipid modification by the enzyme N-myristoyltransferase (NMT). In this study, we demonstrated that heat shock cognate protein 70 (HSC70) is homologous to NMT inhibitor protein (NIP71), which was discovered in our laboratory, based on MALDI-TOF mass spectrometric analysis. The purified bovine cytosolic HSC70 and particulate NIP71 produced a dose-dependent inhibition of human NMT having half maximal inhibitions of 235 and 230 nM, respectively. Further, Western blot analysis revealed that the purified particulate NIP71 and cytosolic HSC70 cross-reacted with both anti-NIP71 and anti-HSC70 antibodies. The results we obtained imply that molecular chaperones could be involved in the regulation of NMT in normal and cancerous cells. Further studies directed to revealing the role of HSC70 in the regulation of NMT may lead to the development of gene based therapies of colon cancer.  相似文献   

6.
Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl-beta-cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry.  相似文献   

7.
8.
9.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

10.
11.
Heat shock proteins (Hsp) are intracellular chaperons, as well as extracellular molecules with immunomodulatory and signaling functions engaged in adaptation to stress on the cellular and organism levels. The presence of Hsp in secretory granules of mast cells (MCs) may be correlated with mast cells’ active participation in adaptation to stress. Using immunoelectron microscopy, we showed that Hsp70 was localized in secretory granules of rat pericardial and peritoneal mast cells. Localization of Hsp70 in rat peritoneal mast cells isolated by Percoll density gradient centrifugation was confirmed by immunoblotting. The possible involvement of mast cells in production of extracellular Hsp70, as well as Hsp70 functions inside the mast cells, is discussed.  相似文献   

12.
Lee GJ  Vierling E 《Plant physiology》2000,122(1):189-198
Small heat shock proteins (sHsps) are a diverse group of heat-induced proteins that are conserved in prokaryotes and eukaryotes and are especially abundant in plants. Recent in vitro data indicate that sHsps act as molecular chaperones to prevent thermal aggregation of proteins by binding non-native intermediates, which can then be refolded in an ATP-dependent fashion by other chaperones. We used heat-denatured firefly luciferase (Luc) bound to pea (Pisum sativum) Hsp18.1 as a model to define the minimum chaperone system required for refolding of a sHsp-bound substrate. Heat-denatured Luc bound to Hsp18.1 was effectively refolded either with Hsc/Hsp70 from diverse eukaryotes plus the DnaJ homologs Hdj1 and Ydj1 (maximum = 97% Luc reactivation with k(ob) = 1.0 x 10(-2)/min), or with prokaryotic Escherichia coli DnaK plus DnaJ and GrpE (100% Luc reactivation, k(ob) = 11.3 x 10(-2)/min). Furthermore, we show that Hsp18.1 is more effective in preventing Luc thermal aggregation than the Hsc70 or DnaK systems, and that Hsp18.1 enhances the yields of refolded Luc even when other chaperones are present during heat inactivation. These findings integrate the aggregation-preventive activity of sHsps with the protein-folding activity of the Hsp70 system and define an in vitro system for further investigation of the mechanism of sHsp action.  相似文献   

13.
14.
Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.  相似文献   

15.
Emerging evidence suggests that a high level of circulating heat shock protein 70 (HSP70) correlates with a lower risk of vascular disease; however, the biological significance of this inverse relationship has not been explored. Herein, we report that oxidative low density lipoprotein (Ox-LDL) and homocysteine (Hcy) induce HSP70 release from endothelial cells. In rat endothelial cells, Ox-LDL and Hcy induced robust release of HSP70, independent of the classical route of endoplasmic reticulum/Golgi protein trafficking or the formation of lipid rafts. In contrast, Ox-LDL and Hcy significantly enhanced the exosomal secretory rate and increased the HSP70 content of exosomes. Exogenous HSP70 had no impact on LPS-, Ox-LDL- and Hcy-induced activation of endothelial cells, whereas HSP70 did activate monocytes alone, resulting in monocyte adhesion to endothelial cells. These results indicate that exosome-dependent secretion of HSP70 from endothelial cells provides a novel paracrine mechanism to regulate vascular endothelial functional integrity.  相似文献   

16.
Heat shock cognate protein 70 is involved in rotavirus cell entry   总被引:6,自引:0,他引:6       下载免费PDF全文
In this work, we have identified the heat shock cognate protein (hsc70) as a receptor candidate for rotaviruses. hsc70 was shown to be present on the surface of MA104 cells, and antibodies to this protein blocked rotavirus infectivity, while not affecting the infectivity of reovirus and poliovirus. Preincubation of the hsc70 protein with the viruses also inhibited their infectivity. Triple-layered particles (mature virions), but not double-layered particles, bound hsc70 in a solid-phase assay, and this interaction was blocked by monoclonal antibodies to the virus surface proteins VP4 and VP7. Rotaviruses were shown to interact with hsc70 at a postattachment step, since antibodies to hsc70 and the protein itself did not inhibit the virus attachment to cells. We propose that the functional rotavirus receptor is a complex of several cell surface molecules that include, among others, hsc70.  相似文献   

17.
Overexpression of heat shock protein (Hsp) 70 and Hsp27 in vivo was proclaimed as a potential tool in therapy of ischemia-reperfusion injury. However, it was so far not known whether these Hsps can beneficially act when increased in cells just at the stage of postischemic reperfusion. This issue was examined in a model of ischemia-reperfusion stress when cultures of endothelial cells (EC) from human umbilical vein were infected with virus-based vectors expressing Hsp70 or Hsp27, or Hsp56, or green fluorescent protein (GFP) and exposed to 20 hours of hypoxia followed by reoxygenation. The infection was performed either 10 hours before hypoxia or immediately after hypoxia, or at different time points of reoxygenation. Only low cell death was detected during hypoxia, but later, up to 40% of the treated cells died via caspase-dependent apoptosis between 6 and 12 hours of reoxygenation. The percentage of apoptotic cells was 1.6- to 3-fold greater in Hsp56- and GFP-infected EC than in Hsp70- or Hsp27-infected EC. The last 2 groups exhibited a lesser extent of procaspase-9 and procaspase-3 activation within 6-9 hours of reoxygenation. The cytoprotective effects of overexpressed Hsp70 and Hsp27 were observed not only in the case of infection before hypoxia but also when EC were infected at the start of reoxygenation or 1-2 hours later. An increase in the Hsp70 and Hsp27 levels in infected EC correlated well with their resistance to apoptosis under reoxygenation. These findings suggest that overexpression of Hsp70 or Hsp27, if it occurs in the involved cells at the early stage of postischemic reperfusion, can still be cytoprotective.  相似文献   

18.
19.
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.  相似文献   

20.
Choi DH  Ha JS  Lee WH  Song JK  Kim GY  Park JH  Cha HJ  Lee BJ  Park JW 《FEBS letters》2007,581(8):1649-1656
Heat shock protein (Hsp) in tumor cells has been proposed to enhance their resistance to chemotherapeutic agents. In the present study, we investigated the influence of Hsp expression on the irinotecan resistance of human colorectal cancer cells. Among eight Hsp genes tested in this study, we confirmed that the expression of Hsp27 correlated with irinotecan resistance in colorectal cancer cells. Specific inhibition of Hsp27 expression using an antisense oliogodeoxynucleotide increased the irinotecan sensitivity. On the contrary, an overexpression of Hsp27 decreased the irinotecan sensitivity in colorectal cancer cells. Elevated expression of Hsp27 decreased caspase-3 activity in colorectal cancer cells. The expression level of Hsp27 determined by immunohistochemical analysis correlated with the clinical response to irinotecan in colorectal cancer patients. Hsp27 expression levels of irinotecan-non-responder (mean staining score, 6.28; proportion of high staining score, 64.2%) were significantly higher compared to those of irinotecan-responder (mean staining score, 3.16; proportion of high staining score, 33.3%) (P for t-test=0.045). These findings suggest that Hsp27 is involved in the irinotecan resistance of colorectal cancer cells possibly by reducing caspase-3 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号