首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate.  相似文献   

2.
The viability of mixtures from manure and agricultural wastes as composting sources were systematically studied using a physicochemical and biological characterization. The combination of different parameters such as C:N ratio, free air space (FAS) and moisture content can help in the formulation of the mixtures. Nevertheless, the composting process may be challenging, particularly at industrial scales. The results of this study suggest that if the respirometric potential is known, it is possible to predict the behaviour of a full scale composting process. Respiration indices can be used as a tool for determining the suitability of composting as applied to manure and complementary wastes. Accordingly, manure and agricultural wastes with a high potential for composting and some proposed mixtures have been characterized in terms of respiration activity. Specifically, the potential of samples to be composted has been determined by means of the oxygen uptake rate (OUR) and the dynamic respirometric index (DRI). During this study, four of these mixtures were composted at full scale in a system consisting of a confined pile with forced aeration. The biological activity was monitored by means of the oxygen uptake rate inside the material (OURinsitu). This new parameter represents the real activity of the process. The comparison between the potential respirometric activities at laboratory scale with the in situ respirometric activity observed at full scale may be a useful tool in the design and optimization of composting systems for manure and other organic agricultural wastes.  相似文献   

3.
This article proposes a simple "in-situ" pulse respirometric method for the estimation of four important kinetic and stoichiometric parameters. The method is validated in a suspended biomass nitrifying reactor for the determination of (i) maximum oxygen uptake rate (OUR(ex)max), (ii) oxidation yield (f(E)), (iii) biomass growth yield (f(S)), and (iv) affinity constant (K(S)). OUR(ex)max and f(E) were directly obtained from respirograms. In the presented case study, a minimum substrate pulse of 10 mgNH(4) (+)-N L(-1) was necessary to determine OUR(ex)max which was 61.15 +/- 4.09 mgO(2) L(-1) h(-1) (5 repetitions). A linear correlation (r(2) = 0.93) obtained between OUR(ex)max and the biomass concentration in the reactor suggests that biomass concentration can be estimated from respirometric experiments. The substrate oxidation yield, f(E), was determined along 60 days of continuous operation with an average error of 5.6%. The biomass growth yield was indirectly estimated from the substrate oxidation yield f(E). The average obtained value (0.10 +/- 0.04 mgCOD mg(-1)COD) was in accordance with the f(S) estimation by the traditional COD mass balance method under steady-state conditions (0.09 +/- 0.01). The affinity constant K(S) was indirectly estimated after fitting the ascending part of the respirogram to a theoretical model. An average value of 0.48 +/- 0.08 mgNH(4) (+)-N L(-1) was obtained, which is in the range of affinity constants reported in the literature for the nitrification process (0.16-2 mgNH(4) (+)-N L(-1)).  相似文献   

4.
Abstract

Biotechnology through plant cell cultures in bioreactors is a tool that allows increasing the production of secondary metabolites of commercial interest. The hydrodynamic characterization, in addition to the transfer (OTR) and uptake (OUR) of oxygen through the dynamic method with different aeration rate, were used to see their influence on the production of biomass and saponins. The culture poisoning technique was used to determine the antifungal activity of the SC-2 and SC-3 saponins in vitro. Likewise, the shear or hydrodynamic stress of 273.6?mN/m2 were calculated based on the Reynolds Number. The oxygen supply (OTR) was always greater than the demand (OUR) for all the aeration rate evaluated. Dry weight values of 8.6 gDW/L and a concentration of 2.7?mg/L and 187.3?mg/L of the saponins SC-2 and SC-3 respectively were obtained with an air flow of 0.1 vvm. In addition, it was possible to inhibit the growth of phytopathogenic fungi in vitro by up to 93%, while in vivo it was possible to reduce the infections of strawberry seeds inoculated with phytopathogens, obtaining up to 94% of germinated seeds. This information will facilitate the rational operation of the bioreactor culture system that produces secondary metabolites.  相似文献   

5.
The simple design of traditional spinner flasks makes the on-line estimation of cellular metabolism impossible. An on-line estimation system has been developed and used for the monitoring of oxygen uptake rate (OUR) for insect cells growing in a modified spinner flask. Neglect of oxygen desorption from culture media is a common source of error in OUR measurements for Sf21 cells. Therefore, an algorithm was developed to compensate for the affect of such desorption process on the determination of OUR. A modified spinner flask was successfully used as a low-volume bioreactor for insect cell cultivation and the OUR measurement developed here is both convenient and reliable.  相似文献   

6.
Composting of several organic wastes of different chemical composition (source-separated organic fraction of municipal solid waste, dewatered raw sludge, dewatered anaerobically digested sludge and paper sludge) was carried out under controlled conditions to study the suitability of different biological indexes (oxygen uptake rate, respirometric index, and respiratory quotient) to monitor the biological activity of the composting process. Among the indexes tested, oxygen uptake rate (also referred to as dynamic respirometric index) provided the most reliable values of microbial activity in a compost environment. On the other hand, values of the static respirometric index measured at process temperature, especially in the early stages of the composting process, were significantly lower than those of the dynamic index, which was probably due to oxygen diffusion limitations present in static systems. Both static and dynamic indexes were similar during the maturation phase. Static respirometric index measured at 37 degrees C should not be used with samples obtained during the thermophilic phase, since it resulted in an underestimation of the respiration values. Respiratory quotient presented only slight variations when changing the process temperature or the waste considered, and its use should be restricted to ensure aerobic conditions in the composting matrix.  相似文献   

7.
The study presents a mechanistic model for the evaluation of glucose utilization by Escherichia coli under aerobic and mesophilic growth conditions. In the first step, the experimental data was derived from batch respirometric experiments conducted at 37 degrees C, using two different initial substrate to microorganism (S(0)/X(0)) ratios of 15.0 and 1.3 mgCOD/mgSS. Acetate generation, glycogen formation and oxygen uptake rate profile were monitored together with glucose uptake and biomass increase throughout the experiments. The oxygen uptake rate (OUR) exhibited a typical profile accounting for growth on glucose, acetate and glycogen. No acetate formation (overflow) was detected at low initial S(0)/X(0) ratio. In the second step, the effect of culture history developed under long-term growth limiting conditions on the kinetics of glucose utilization by the same culture was evaluated in a sequencing batch reactor (SBR). The system was operated at cyclic steady state with a constant mean cell residence time of 5 days. The kinetic response of E.coli culture was followed by similar measurements within a complete cycle. Model calibration for the SBR system showed that E. coli culture regulated its growth metabolism by decreasing the maximum growth rate (lower microH) together with an increase of substrate affinity (lower K(S)) as compared to uncontrolled growth conditions. The continuous low rate operation of SBR system induced a significant biochemical substrate storage capability as glycogen in parallel to growth, which persisted throughout the operation. The acetate overflow was observed again as an important mechanism to be accounted for in the evaluation of process kinetics.  相似文献   

8.
The newly developed in situ oxygen uptake rate (in situ OUR) probe presented in this article is based on the in situ microscope technology platform. It is designed to measure the oxygen uptake rate (OUR) of mammalian cells, an important parameter for metabolic flux analysis, inside a reactor (in situ) and in real-time. The system isolates a known volume of cell culture from the bulk inside the bioreactor, monitors the oxygen consumption over time, and releases the sample again. The sample is mixed during the measurement with a new agitation system to keep the cells in suspension and prevent oxygen concentration gradients. The OUR measurement system also doubles as a standard dissolved oxygen (DO) probe for process monitoring when it is not performing OUR measurements. It can be equipped with two different types of optical sensors (i.e., DO, pH) simultaneously or a conventional polarographic DO-probe (Clark type). This new probe was successfully tested in baby hamster kidney perfusion cell cultures.  相似文献   

9.
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.  相似文献   

10.
A variety of microorganisms were used to hydrolyze racemic methyl jasmonate [I] with varying degrees of enantioselectivity. The fungi tested included species from the genera Aspergillus, Penicillium, and Talaromyces. All fungi tested showed a preference for the [1S,2S(Z)]-(+)-isomer. The yeasts Saccharomyces cerevisiae and Candida albicans showed no activity. A number of bacterial genera were also tested. No activity could be shown for members of the genera Bacillus, Pseudomonas, Escherichia, Nocardia, and Thermoactinomyces. Hydrolytic activity was found in the genera Streptomyces and Mycobacterium. S. henetus showed the same enantioselectivity as the fungi, while M. phlei hydrolyzed the [1R,2R(Z)]-(−)-isomer preferentially. A number of isolated enzymes were also screened for activity. Varying degrees of hydrolytic activity and enantioselectivity were found.  相似文献   

11.
Partial nitrification has proven to be an economic way for treatment of industrial N-rich effluent, reducing oxygen and external COD requirements during nitrification/denitrification process. One of the key issues of this system is the intermediate nitrite accumulation stability. This work presents a control strategy and a modeling tool for maintaining nitrite build-up. Partial nitrification process has been carried out in a sequencing batch reactor at 30 degrees C, maintaining strong changing ammonia concentration in the reactor (sequencing feed). Stable nitrite accumulation has been obtained with the help of an on-line oxygen uptake rate (OUR)-based control system, with removal rate of 2 kg NH4 (+)-N x m(-3)/day and 90%-95% of conversion of ammonium into nitrite. A mathematical model, identified through the occurring biological reactions, is proposed to optimize the process (preventing nitrate production). Most of the kinetic parameters have been estimated from specific respirometric tests on biomass and validated on pilot-scale experiments of one-cycle duration. Comparison of dynamic data at different pH confirms that NH3 and NO2- should be considered as the true substrate of nitritation and nitratation, respectively. The proposed model represents major features: the inhibition of ammonia-oxidizing bacteria by its substrate (NH3) and product (HNO2), the inhibition of nitrite-oxidizing bacteria by free ammonia (NH3), the INFluence of pH. It appears that the model correctly describes the short-term dynamics of nitrogenous compounds in SBR, when both ammonia oxidizers and nitrite oxidizers are present and active in the reactor. The model proposed represents a useful tool for process design and optimization.  相似文献   

12.
Arising from the requirement for discovery of novel biocatalysts with unusual properties, a process was developed which uniquely combines aspects of continuous culture with the measurement of oxygen uptake. This adaptation of the chemostat can be used to facilitate the isolation of a number of microorganisms with desirable properties, particularly those with useful metabolic capabilities and/or enzymes. The technique was also used to provide feedback on the metabolic status of a microbial population and increase the feed flow rate (i.e., dilution rate) thereby enabling the isolation of microorganisms with enhanced 1,3‐propanediol dehydrogenase activity. The use of oxygen uptake as an indicator of cellular activity enables indirect measurement of substrate utilization and provides a real‐time online assessment of the status of microbial enrichment or evolutionary processes and provides an opportunity, through the use of feedback systems, to control these processes. To demonstrate the utility of the technique, oxygen uptake rate (OUR) was compared with a range of conventional analytical techniques that are typically used to monitor enrichment/evolutionary processes and showed good correlation. Further validation was demonstrated by monitoring a characterizable microbial population shift using OUR. The population change was confirmed using off‐line analytical techniques that are traditionally used to determine microbial activity. OUR was then used to monitor the enrichment of microorganisms capable of using a solvent (1‐methyl‐2‐pyrrolidinone) as the sole source of carbon for energy and biomass formation from a heterogeneous microbial population. After purification the microorganisms taken from the enrichment process were able to completely utilize 1 g L?1 1‐methyl‐2‐pyrrolidinone within 24 h demonstrating that the technique had correctly indicated the enriched population was capable of growth on 1‐methyl‐2‐pyrrolidinone. The technique improves on conventional microbial enrichment that utilizes continuous culture by providing a real‐time assessment of the enrichment process and the opportunity to use the OUR output for automated control and variation of one or more growth parameters. Biotechnol. Bioeng. 2009;102: 673‐683. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
This investigation proved that respirometry combined with sequencing batch reactor (SBR) could be an effective way for the removal of COD in tannery wastewater. Measurement of oxygen uptake rates (OUR) and corresponding COD uptake rates showed that a 12-h operating cycle was optimum for tannery wastewater. The removal of COD by degradation was stoichiometric with oxygen usage. A plot of OUR values provided a good indication of the biological activity in the reactor. A high OUR value corresponded to the feed period; at the end of the cycle, when the substrate was depleted, the OUR value was low. At a 12-h SBR cycle with a loading rate of 1.9-2.1 kgm(-3) d(-1), removal of 80-82% COD, 78-80% TKN and 83-99% NH(3)-N were achieved. These removal efficiencies were much higher than the conventional aerobic systems. A simple method of COD fractionation was performed from the OUR and COD uptake rate data of the SBR cycle. About 66-70% of the influent COD was found to be readily biodegradable, 10-14% was slowly degradable and 17-21% was non-biodegradable. The oxygen mass transfer coefficient, K(L)a (19 +/- 1.7 h(-1)) was derived from respirometry. It was observed that with the exception of high organic load at the initial feed the oxygen transfer capacity was in excess of the OUR, and aerobic condition was generally maintained. Simultaneous nitrification-denitrification was observed in the SBR during the feed period as proved by mass balance.  相似文献   

14.
在批式及灌流培养条件下研究了杂交瘤细胞在无血清培养基中的生长、代谢情况与氧消耗的关系。应用动力学方法在线进行OUR的检测,同时离线取样检测其他参数。结果发现OUR与谷氨酰胺的消耗、抗体的生成及活细胞密度间有明显的相关关系,进一步的分析还发现在对数生长期,OUR与活细胞密度间具有良好的线性关系,qOUR(0.103±0.028)×10-12mol/cell/h,可以通过它来进行细胞密度的在线检测。并通过以ΔOUR=0时刻作为灌流调整点进行连续灌流培养的初步实验验证了OUR作为培养过程反馈控制参数的可能性。  相似文献   

15.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Culture (NAD(P)H) fluorescence dynamics have been used to provide information on culture behaviour when Xanthomonas campestris was grown in a bioreactor. Culture fluorescence decreased by 1150 units in response to an increase in extracellular pH from 3.1 to 7.6. A mathematical model incorporating the effect of pH on the bulk NADH depletion reaction simulated the experimental data. The rates of bulk NADH formation and depletion reactions were 1 s−1 and 719 (M h−1)−1 s−1, respectively. Subsequent to the initial NADH decrease, the culture fluorescence increased to within 200 units of its original value, with a concomitant decrease in oxygen uptake rate (OUR) from 7.3 to 3 mM h−1. A mathematical model incorporating the hypothesis that the culture manipulated its OUR to increase its NADH level, simulated the experimental data. In addition, it was inferred from culture fluorescence that the intracellular oxygen availability becomes insufficient at or below 10% extracellular dissolved oxygen value. Studies on H2O2 addition to X. campestris, to optimize the liquid-phase oxygen supply, showed no change in metabolic state, as indicated by NADH fluorescence, until 1.4 mmol H2O2 (g cell)−1 and a significant decrease above that. Investigations on the reasons for decreases in NADH fluorescence suggested a DNA-damaging Fenton reaction as the probable reason for the observed NADH decrease on addition of H2O2.  相似文献   

17.
Cell encapsulation provides cells a three-dimensional structure to mimic physiological conditions and improve cell signaling, proliferation, and tissue organization as compared to monolayer culture. Encapsulation devices often encounter poor mass transport, especially for oxygen, where critical dissolved levels must be met to ensure both cell survival and functionality. To enhance oxygen transport, we utilized perfluorocarbon (PFC) oxygen vectors, specifically perfluorooctyl bromide (PFOB) immobilized in an alginate matrix. Metabolic activity of HepG2 liver cells encapsulated in 1% alginate/10% PFOB composite system was 47-104% higher than alginate systems lacking PFOB. A cubic model was developed to understand the oxygen transport mechanism in the alginate/PFOB composite system. The theoretical flux enhancement in alginate systems containing 10% PFOB was 18% higher than in alginate-only systems. Oxygen uptake rates (OURs) of HepG2 cells were enhanced with 10% PFOB addition under both 20% and 5% O2 boundary conditions, by 8% and 15%, respectively. Model predictions were qualitatively and quantitatively verified with direct experimental OUR measurements using both a perfusion reactor and oxygen sensing plate, demonstrating a greater OUR enhancement under physiological O2 boundary conditions (i.e., 5% O2). Inclusion of PFCs in an encapsulation matrix is a useful strategy for overcoming oxygen limitations and ensuring cell viability and functionality both for large devices (>1 mm) and over extended time periods. Although our results specifically indicate positive enhancements in metabolic activity using the model HepG2 liver system encapsulated in alginate, PFCs could be useful for improving/stabilizing oxygen supply in a wide range of cell types and hydrogels.  相似文献   

18.
INT-dehydrogenase test for activated sludge process control   总被引:4,自引:0,他引:4  
Dehydrogenase activity assay of activated sludge using the redox dye 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) was investigated. INT-dehydrogenase activity (INT-DHA) was directly proportional to INT dosage and inversely proportional to bio-mass concentration over limited ranges. INT dosages exceeding 2.5m/M were toxic to dilute activated sludge suspensions. INT-DHA was greatest near pH 9, whereas the peak oxygen uptake rate (OUR) occurred at pH 8. Both INT-DHA and OUR varied inversely with sludge age, but INT-DHA was the more sensitive of the two parameters to this variable. Consistently good and highly significant correlations between INT-DHA and OUR of chlorine stressed activated sludge were found at sludge ages ranging 2.2-7.0 days.  相似文献   

19.
Dissolved oxygen (DO) concentration was selected as a principal parameter for translating results of shake flask fermentation of Trichoderma viride (biocontrol fungi) to a fermenter scale. All fermentations were carried out in a 7.5 l automated fermenter with a working volume of 4 l. Fermentation performance parameters such as volumetric oxygen transfer coefficient (k L a), oxygen uptake rate (OUR), rheology, conidia concentration, glucose consumption, soluble chemical oxygen demand, entomotoxicity and inhibition index were measured. The conidia concentration, entomotoxicity and inhibition index were either stable or improved at lower DO concentration (30%). Variation of OUR aided in assessing the oxygen supply capacity of the fermenter and biomass growth. Meanwhile, rheological profiles demonstrated the variability of wastewater during fermentation due to mycelial growth and conidiation. In order to estimate power consumption, the agitation and the aeration requirements were quantified in terms of area under the curves, agitation vs. time (rpm h), and aeration vs. time (lpm h). This simple and novel strategy of fermenter operation proved to be highly successful which can be adopted to other biocontrol fungi.  相似文献   

20.
Culture redox potential (CRP) and oxygen uptake rate (OUR) were monitored on-line during glucose- and glutamine-limited batch cultures of a murine hybridoma cell line that secretes a neutralizing monoclonal antibody specific to toxin 2 of the scorpion Centruroides noxius Hoffmann. It was found that OUR and CRP can be used for assessing the viable cell concentration and growth phases of the culture. Before nutrient depletion, OUR increased exponentially with viable cell concentration, whereas CRP decreased monotonically until cell viability started to decrease. During the death phase, CRP gradually increased. A sudden decrease in OUR occurred upon glucose or glutamine depletion. CRP traced the dissolved oxygen profile during a control action or an operational eventuality, however, during nutrient depletion it did not follow the expected behavior of a system composed mainly by the O(2)/H(2)O redox couple. Such a behavior was not due to the accumulated lactate or ammonia, nor to possible intracellular redox potential changes caused by nutrient depletion, as inferred from respiration inhibition by rotenone or uncoupled respiration by 2,4-dinitrophenol. As shown in this study, operational eventualities can be erroneously interpreted as changes in OUR when using algorithms based solely on oxygen balances. However, simultaneous measurements of CRP and OUR may be used to discriminate real metabolic events from operational failures. The results presented here can be used in advanced real-time algorithms for controling glucose and glutamine at low concentrations, avoiding under- or over-feeding them in hybridoma cultures, and consequently reducing the accumulation of metabolic wastes and improving monoclonal antibody production. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 555-563, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号