首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Human keratinocytes and activated monocytes produces factors which can stimulate the proliferation of thymocytes. The same activity has also been implicated in regulating the expression of plasma proteins in liver cells during the acute phase reaction. To assess whether factors produced by such cells can directly influence liver cells to change the production of acute phase plasma proteins, we studied in tissue culture the response pattern of hepatic cells from three species: human hepatoma cells ( HepG2 cells), and primary cultures of rat and mouse hepatocytes. Conditioned media from the squamous carcinoma COLO-16 cells, normal epidermal cells, and activated peripheral monocytes were able to stimulate the synthesis of specific acute phase plasma proteins: alpha 1-antichymotrypsin in HepG -2 cells, alpha 1-antichymotrypsin, alpha 1-acid glycoprotein, alpha 1-acute phase protein, and alpha 2-macroglobulin in rat hepatocytes, and alpha 1-acid glycoprotein, haptoglobin, and hemopexin in mouse hepatocytes. Only in rat cells, dexamethasone was found to have further enhancing effect. The increased production of plasma proteins could be explained by an elevated level of functional mRNA. Comparing thymocyte-stimulating activities with the effects on plasma protein production, we found some difference both between the conditioned media of epidermal cells and monocytes, and between the responses of the three hepatic cell systems. Furthermore, gel chromatography of conditioned media resulted in partial separation of activities regulating liver cells and thymocytes. Since there is no strict correlation between thymocyte- and hepatocyte-stimulating activities, the presence of different sets of specific factors is assumed.  相似文献   

2.
Regulation of carbamoyl-phosphate synthetase I (CPS) synthesis by various hormones was compared in primary cultured hepatocytes from adult rat and in Reuber hepatoma H-35 by pulse labeling of the cells with [35S]methionine. CPS synthesis in hepatocytes was stimulated 8-fold and 5-fold by dexamethasone and glucagon respectively. CPS synthesis in hepatocytes was synergically (about 50-fold) stimulated by a combination of dexamethasone and glucagon. Less synergic stimulation was observed by combining dexamethasone with N6, O2'-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) or with isoproterenol. The basal level of CPS synthesis in hepatoma cells was higher than that in hepatocytes. CPS synthesis in hepatoma cells was stimulated by dexamethasone and dibutyryl-cAMP but the extent was only 3-fold and 1.8-fold respectively. The synergic effect of combination of dexamethasone and dibutyryl-cAMP was not observed in hepatoma cells. Neither glucagon nor isoproterenol exhibited an appreciable effect on CPS synthesis in hepatoma cells. Insulin and epinephrine suppressed CPS synthesis both in hepatocytes and hepatoma cells. The effect of epinephrine was indicated to be through alpha-adrenergic receptors. The effects of insulin and epinephrine were additive on CPS synthesis both in hepatocytes and hepatoma cells.  相似文献   

3.
Recombinant human IL-6 (rhIL-6) is a potent inducer of the synthesis of acute phase proteins in adult human hepatocytes. A wide spectrum of acute phase proteins is regulated by this mediator. After labeling of rhIL-6 stimulated human hepatocytes with [35S]methionine acute phase protein synthesis was measured by immunoprecipitation. Serum amyloid A, C-reactive protein, haptoglobin, alpha 1-antichymotrypsin and fibrinogen were strongly induced (26-, 23-, 8.6-, 4.6- and 3.8-fold increases, respectively). Moderate increases were found for alpha 1-antitrypsin (2.7-fold) and alpha 1-acid glycoprotein (2.7-fold). RhIL-6 had no effect on alpha 2-macroglobulin, whereas fibronectin, albumin and transferrin decreased to 64, 56 and 55% of controls. In the cases of serum amyloid A, haptoglobin, alpha 1-antichymotrypsin, alpha 1-antitrypsin and alpha 1-acid glycoprotein, dexamethasone enhanced the action of rhIL-6. We conclude that rhIL-6 controls the acute phase response in human liver cells.  相似文献   

4.
A serum-free, feeder cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1-wk-old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder cell layers of mitotically blocked mouse fibroblasts. In serum-free medium containing 1% DMSO and 1 μM dexamethasone, confluent monolayers of hepatocytes formed and could be maintained for several wk. Light and electron microscopic analysis showed hepatocytes with in vivo-like morphology, and many hepatocytes were sandwiched between the feeder cells. When isolated liver cells were cultured in medium without dexamethasone but with 0.5% DMSO, monolayers of cholangioctyes formed that subsequently self-organized into networks of multicellular ductal structures, and whose cells had monocilia projecting into the lumen of the duct. Gamma-glutamyl transpeptidase (GGT) was expressed by the cholangiocytes at their apical membranes, i.e., at the inner surface of the ducts. Cellular GGT activity increased concomitantly with the development of ductal structures. Cytochrome P-450 was determined in microsomes following addition of metyrapone to the cultures. In vivo-like levels of P-450s were found in hepatocyte monolayers while levels of P-450 were markedly reduced in cholangiocyte monolayers. Serum protein secretion in conditioned media was analyzed by Western blot and indicated that albumin, transferrin, and haptoglobin levels were maintained in hepatocytes while albumin and haptoglobin declined over time in cholangiocytes. Quantitative RT-PCR analysis showed that serum protein mRNA levels were significantly elevated in the hepatocytes monolayers in comparison to the bile ductule-containing monolayers. Further, mRNAs specific to cholangiocyte differentiation and function were significantly elevated in bile ductule monolayers in comparison to hepatocyte monolayers. The results demonstrate an in vitro model for the study of either porcine hepatocytes or cholangiocytes with in vivo-like morphology and function.  相似文献   

5.
Adult mouse hepatocytes respond in vivo to experimentally induced acute inflammation by an increased synthesis and secretion of alpha 1-acid glycoprotein, haptoglobin, hemopexin, and serum amyloid A. Concurrently, the production of albumin and apolipoprotein A-1 is reduced. To define possible mediators of this response and to study their action in tissue culture, we established primary cultures of hepatocytes. Various hormones and factors that have been proposed to regulate the hepatic acute phase reaction were tested for their ability to modulate the expression of plasma proteins in these cells. Acute phase plasma and conditioned medium from activated monocytes influenced the production of most acute phase plasma proteins, and the regulation appears to occur at the level of functional mRNA. Purified hormones produced a significant anabolic response in only a few cases: dexamethasone was found to be effective in maintaining differentiated expression of the cells; and glucagon produced a specific inhibition of haptoglobin synthesis. When cells were treated with a combination of conditioned monocyte medium and dexamethasone, secretion of proteins was markedly reduced. The carbohydrate moieties of all plasma glycoproteins were incompletely modified, apparently as a result of decreased intracellular transport of newly synthesized plasma proteins. Although primary hepatocytes were not phenotypically stable in tissue culture, the cells nevertheless retained a broad response spectrum to exogenous signals. We propose this as a useful system to study the production of plasma proteins and thereby pinpoint the nature and activity of effectors mediating the hepatic acute phase reaction.  相似文献   

6.
A subline of the rat hepatoma (H-35) cells has been identified which responds to hepatocyte-stimulating factors (HSFs) of human squamous carcinoma cells by increased synthesis of all major rat acute phase plasma proteins. The regulation occurs at the level of mRNA. Two HSFs (HSF-I and HSF-II) have been purified from conditioned medium of the squamous carcinoma cells. HSF-I is a protein with an Mr = 18,000 and pI 5.5, and HSF-II is a glycoprotein with an Mr = 34,000 and a broad, neutral to basic charge. In H-35 cells, HSF-I predominantly stimulates the synthesis of complement C3 and haptoglobin and acts synergistically with dexamethasone to stimulate alpha 1-acid glycoprotein. HSF-II stimulates cysteine protease inhibitor, alpha 1-antichymotrypsin, alpha 1-antitrypsin, fibrinogen, and hemopexin, and acts synergistically with dexamethasone to stimulate alpha 2-macroglobulin. Each HSF is between 10 and 100 times less effective in regulating proteins of the other set. Human tumor necrosis factor and interleukin-1 increase complement C3, haptoglobin, and alpha 1-acid glycoprotein, as does HSF-I, but are unable to modulate any of the other acute phase proteins. The monokines differ from HSF-I is their low activity in HepG2 cells and rat hepatocytes.  相似文献   

7.
After treatment with dexamethasone, rat hepatoma-tissue culture cells show a markedly enhanced adhesion to the substratum and increased cell- to-cell interaction. In addition, there is a profound change in the production of secretory glycoproteins. Although the relative synthesis and secretion of a gelatin-binding, fibronectinlike glycoprotein is increased threefold, we do not think this protein is responsible for the improved adhesion properties of the cells because the hepatoma cells do not bind normal fibronectin and because the HTC-produced fibronectin is neither bound by fibroblasts nor has it any affinity for ganglioside-containing phospholipid vesicles. Therefore, these hepatoma cells represent a unique system for studying the regulation of fibronectin synthesis by glucocorticoids. Furthermore, analyses of primary fetal rat hepatocytes have shown that these cells, unlike normal adult hepatocytes, synthesize and secrete fibronectin, which is structurally related to the HTC-cell protein. The comparison of this protein with fibronectin from normal cells will allow a structural characterization of the functional defect in the fibronectin synthesized by transformed cells.  相似文献   

8.
The mouse hepatoma cell line Hepa-1 was shown to express an aldehyde dehydrogenase (ALDH) isozyme which was inducible by TCDD and carcinogenic polycyclic aromatic hydrocarbons. The induced activity could be detected with benzaldehyde as substrate and NADP as cofactor (B/NADP ALDH). As compared with rat liver and hepatoma cell lines, the response was moderate (maximally 5-fold). There was an apparent correlation between this specific form of ALDH and aryl hydrocarbon hydroxylase (AHH) in the Hepa-1 wild-type cell line--in terms of inducibility by several chemicals. However, the magnitude of the response was clearly smaller for ALDH than for AHH. Southern blot analysis showed that a homologous gene (class 3 ALDH) was present in the rat and mouse genome. The gene was also expressed in Hepa-1 and there was a good correlation between the increase of class 3 ALDH-specific mRNA and B/NADP ALDH enzyme activity after exposure of the Hepa-1 cells to TCDD. It is concluded that class 3 ALDH is inducible by certain chemicals in the mouse hepatoma cell line, although the respective enzyme is not inducible in mouse liver in vivo.  相似文献   

9.
10.
Dexamethasone and insulin stimulate production of several plasma proteins in primary cultures of adult rat hepatocytes but inhibit their production in primary cultures of Morris hepatoma cell line 7777W. The acute phase response elicited in cultured cells by crude cytokines from activated rat peritoneal macrophages is considerably higher in hepatocytes in the presence of hormones, and especially of dexamethasone. In hepatoma cells the hormones enhance the cytokine-induced formation of fibrinogen and cysteine proteinase inhibitor but are without significant effect on suppression of albumin and alpha-fetoprotein synthesis by macrophage supernatants.  相似文献   

11.
We administered a series of steroid hormones to primary nonproliferating cultures of adult rat hepatocytes and found that dexamethasone and other glucocorticoids but not sex steroid hormones, mineralocorticoids, or derivatives of pregnenolone other than pregnenolone 16 alpha-carbonitrile (PCN) stimulated de novo synthesis of an immunoreactive protein, indistinguishable from the form of cytochrome P-450 (P450PCN) induced by PCN in rat liver. No difference were discerned among purified liver cytochromes from rats treated with dexamethasone, PCN or dexamethasone plus PCN, among proteolytic digests of these proteins, or among the immunoprecipitated cytochromes prepared from cultured hepatocytes treated with these steroids as judged by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate followed by immunoblot analysis. Of the steroids tested, dexamethasone proved to be the most efficacious inducer increasing the rate of synthesis of P450PCN from 0.05% of total cellular protein synthesis in incubated control cultures (measured as incorporation of [3H]leucine into immunoprecipitable P450PCN) to as much as 9.4% in cultures incubated for 5 days in medium containing dexamethasone (10(-5) M). As with traditional glucocorticoid-responsive liver functions, induction of immunoreactive P450PCN was dependent on the concentration of dexamethasone (10(-8) to 10(-5) M) and was promptly reversed upon withdrawal of the steroid. However, during the 24-h interval between 24 to 48 h of culture age the hepatocytes were refractory to either induction or de-induction of immunoreactive P450PCN even though continuous exposure of the cells to dexamethasone (including this interval) was mandatory for maximal induction of P450PCN at 120 h in culture. Unlike cultured rat hepatocytes, HTC hepatoma cultures failed to exhibit dexamethasone-responsive expression of immunoreactive P450PCN. We conclude that glucocorticoids and PCN constitute a specific "class" of synthetic and endogenous inducers of a single form of cytochrome P-450.  相似文献   

12.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

13.
Three acute-phase proteins, haptoglobin, alpha 2-macroglobulin and hemopexin, as well as albumin, have been measured daily in the hydrocortisone-supplemented serum-free medium of pure and mixed cultures of adult rat hepatocytes for 5 and 20 days respectively. Whereas plasma protein production rapidly declined in pure culture, it remained relatively stable when hepatocytes were co-cultured with rat liver epithelial cells. In the latter cultures, an early stimulation of albumin and alpha 2-macroglobulin secretion was observed. In addition, four other plasma proteins, fibrinogen, alpha 1-acute-phase protein, alpha 1-acid glycoprotein and alpha 1-antitrypsin were shown by immunodiffusion to still be produced by day 20 of co-culture. These results suggest that hepatocyte co-cultures represent a suitable model for studying the mechanism which controls synthesis of plasma proteins, including acute-phase proteins by liver cells.  相似文献   

14.
Acute phase proteins (APPs) are predominantly synthesized in the liver and play an important role in restoring homeostasis. In the present study, we set out to answer two questions using transdifferentiated hepatocytes induced from pancreatic cells as a model for studying the acute phase response. Firstly, do transdifferentiated hepatocytes express acute phase proteins following culture with glucocorticoid and cytokines? Secondly, what is the molecular basis of the induction of acute phase proteins in transdifferentiated hepatocytes? Hepatic transdifferentiation was induced in 11.5-day mouse embryonic pancreas or the pancreatic cell line AR42J-B13 (B13) by culture with dexamethasone. We found that acute phase proteins [alpha2-macroglobulin (MG), haptoglobin (Hp)] were induced in both systems following culture with dexamethasone. The combined treatment of dexamethasone and oncostatin M (OSM) enhanced the expression of the acute phase proteins in B13 cells and the mechanism of the up-regulation by the cytokine is probably mediated by phosphorylation of STAT3 and STAT1. In addition, ectopic expression of either C/EBPbeta or C/EBPalpha in B13 cells induced haptoglobin expression and culture with oncostatin M was sufficient to enhance the expression of haptoglobin in C/EBPbeta transfected cells from 18% to 43%. The results of the present study indicate transdifferentiated hepatocytes have the potential to be a useful model to study liver function in vitro.  相似文献   

15.
16.
Slices of Morris hepatoma 7777 or rat liver isolated from control or turpentine-injected rats were incubated for 2 h with 14C-leucine. Radioactivities incorporated into albumin, alpha-fetoprotein, fibrinogen, alpha 1-AP-globulin, haptoglobin and alpha 1-acid glycoprotein were determined after the proteins had been isolated from the incubation medium or tissue homogenate by immunoprecipitation with monospecific antisera. It was found that hepatoma synthesizes fibrinogen, alpha 1-AP-globulin and alpha 1-acid glycoprotein in the amounts comparable to rat liver, whereas formation of albumin and haptoglobin is reduced 5- to 10-fold. Local inflammation elicited by injection of turpentine to tissue donors increased formation of acute-phase protein in liver slices but had no effect on synthesis of these proteins in preparations of Morris hepatoma, although certain ultrastructural changes in the Golgi complex were observed not only in the liver but also in the tumour.  相似文献   

17.
Summary Hepatocytes were isolated from human fetal liver in order to analyze the direct effects of growth factors and hormones on human hepatocyte proliferation and function. Mechanical fragmentation and then dissociation of fetal liver tissue with a collagenase/dispase mixture resulted in high yield and viability of hepatocytes. Hepatocytes were selected in arginine-free, ornithine-supplemented medium and defined by morphology, albumin production and ornithine uptake into cellular protein. A screen of over twenty growth factors, hormones, mitogenic agents and crude organ and cell extracts for effect on the stimulation of hepatocyte growth revealed that EGF, insulin, dexamethasone, and factors concentrated in bovine neural extract and hepatoma cell-conditioned medium supported attachment, maintenance and growth of hepatocytes on a collagen-coated substratum. The population of cells selected and defined as differentiated hepatocytes had a proliferative potential of about 4 cumulative population doublings. EGF and insulin synergistically stimulated DNA synthesis in the absence of other hormones and growth factors. Although neural extracts enhanced hepatocyte number, no effect on DNA synthesis of neural extracts or purified heparin-binding growth factors from neural extracts could be demonstrated in the absence or presence of defined hormones, hepatoma-conditioned medium or serum. Hepatoma cell-conditioned medium had the largest impact on both hepatocyte cell number and DNA synthesis under all conditions. Dialyzed serum protein (1 mg/ml) at 10 times higher protein concentration had a similar effect to hepatoma cell-conditioned medium (100 μg/ml). The results suggest that hepatoma cell conditioned medium may be a concentrated and less complicated source than serum for purification and characterization of additional normal hepatocyte growth factors. This work was supported by NIH grant DK35310. Editor’s statement Many investigators have struggled with the special problems associated with culture of differentiated hepatocytes. In this paper attention is given to the specific growth factor requirements for fetal human hepatocytes. The observation that factors from hepatoma conditioned medium or neural extracts enhanced the growth of the cells may indicate that additional growth factors are to be identified that are important in the survival and proliferation of hepatocytes, and may also indicate that the malignant transformation of these cells may involve the production of autocrine growth stimulators.  相似文献   

18.
Setkov NA  Eremeev AV 《Tsitologiia》2001,43(6):567-574
Mouse liver regeneration after partial hepatectomy can be considered as a spectacular example of controlled tissue increase. In this study serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with primary hepatocytes isolated from normal (intact) and regenerating adult mouse liver at different times after partial hepatectomy (1-15 days) to elucidate mechanisms of liver cell proliferation cessation at the regeneration end. DNA synthesis was investigated in the nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes isolated from regenerating liver within 1-12 days following operation did not retard the entry of stimulated fibroblast nuclei into the S-period. In contrast, hepatocytes isolated within 15 days after hepatectomy were found to have inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period in heterokaryons. Preincubation of these hepatocytes with cyclocheximide for 2-4 h abolished their ability to suppress DNA synthesis in stimulated fibroblast nuclei in heterokaryons. Possible reasons of inhibitory effect of differentiated cells in heterokaryos are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in regenerating hepatocytes seems to be stopped being affected by the intracellular growth inhibitors, whose formation depends on protein synthesis.  相似文献   

19.
Studies of fibronectin synthesized by cultured chick hepatocytes   总被引:3,自引:0,他引:3  
We have adapted a chick embryo liver cell system for studying the synthesis of proteins secreted by hepatocytes. In primary liver cell cultures maintained for several days in arginine-deficient medium containing ornithine (0.7 mM) and carbamyl phosphate (1 mM), only hepatocytes demonstrated normal morphological and biosynthetic characteristics, indicating that they possessed a functional ornithine cycle as a source of arginine production. Non-parenchymal liver cells, such as fibroblasts, which lack the ornithine cycle were excluded. Hepatocytes in arginine-deficient or arginine-containing medium synthesized fibronectin (Fn) over several days at a constant rate of 3 micrograms +/- 1 microgram/mg cell protein per day, with fibronectin representing approximately 3% of the total secreted hepatocyte proteins during any culture period after the first 24 h. Pulse-chase experiments indicated that Fn synthesis and secretion was relatively rapid (t1/2 = 45 min) and represented approximately 95% of the intracellularly labelled Fn. This Fn is secreted predominantly as a 450 kD dimer with a subunit size that is indistinguishable from the plasma form as assessed by one-dimensional electrophoretic analysis. Continuous exposure of hepatocytes to insulin caused a moderate decrease (26%) in Fn synthesis, whereas there was no effect of short-term exposure. In contrast, dexamethasone stimulated Fn production 2-3-fold, consistent with its known ability to stimulate hepatocyte production of acute phase proteins. Under these conditions, electrophoretic analyses showed that an increased quantity of intact hepatocyte Fn was produced having the same molecular size of plasma Fn.  相似文献   

20.
Human squamous carcinoma (COLO-16) cells release factors which specifically stimulate the synthesis of major acute-phase plasma proteins in human and rodent hepatic cells. Anion exchange, hydroxyapatite, lectin, and gel chromatography of conditioned medium of COLO-16 cells result in separation into three distinct forms of hepatocyte-stimulating factors (designated HSF-I, HSF-II, and HSF-III) with apparent molecular weights of 30,000, 50,000 and 70,000, respectively. None of the preparations contains detectable amounts of thymocyte-stimulating activity. Each of the three HSF forms stimulates the accumulation of mRNA for alpha 1-antichymotrypsin in the human hepatoma cell line, HepG2. When the same factors were added to primary cultures of adult rat hepatocytes, the expression of the same set of plasma proteins was modulated as by nonfractionated medium. The hormonally induced accumulation of mRNA for acute phase proteins is qualitatively comparable to that occurring in the liver of inflamed rats. Unlike in human cells, in rat liver cells dexamethasone acts additively and synergistically with HSFs. The only functional difference between the three HSF forms lies in the level of maximal stimulation. HSF-I represents the predominant form produced by normal human keratinocytes and closely resembles in molecular size and isoelectric point the activity produced by activated peripheral blood monocytes while the larger molecular weight forms are more prevalent in human as well as mouse squamous carcinoma cells. The observation that HSFs from different sources elicit essentially the same pleiotropic response in hepatic cells led to the hypothesis that the species-specific reaction of adult liver cells to inflammatory stimuli is pre-programmed and that the function of any HSF is to trigger and tune the execution of this fixed cellular process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号