首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusion Much more work has been done on Pi transport processes, even in the last five years, than we have been able to mention in the space available. We have restricted our discussion to studies on mechanisms of transport or transport regulation, identification of transport proteins and their essential amino acids, and isolation, purification, and reconstitution of Pi transport systems. Many valuable studies on the physiology of Pi transport and its regulation and Pi transport in nonepithelial cells have also been conducted. Transport of Pi into and out of organelles other than the mitochondrion is gaining well-deserved attention, as are transport processes in fungi and plants. It is hoped that in another five years many Pi transport processes will be understood in true molecular terms and that this will increase our knowledge of cellular bioenergetics and metabolism.  相似文献   

2.
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression inEscherichia coli of a chimera protein involving Pic and ATP synthase subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.  相似文献   

3.
The type IIa Na/Pi cotransporter mediates proximal tubular brush-border membrane secondary active phosphate (Pi) flux. It is rate limiting in tubular Pi reabsorption and, thus, a final target in many physiological and pathophysiological situations of altered renal Pi handling (1–4). In the present short review, we will briefly summarize our current knowledge about the transport mechanism (cycle) as well as particular regions of the transporter protein (“molecular domains”) that potentially determine transport characteristics.  相似文献   

4.

Background

Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane.

Scope of review

Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum.

Major conclusion

Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms.

General significance

Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field.  相似文献   

5.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

6.
In this study we have used a newly isolated Yarrowia lipolytica yeast strain with a unique capacity to grow over a wide pH range (3.5–10.5), which makes it an excellent model system for studying H+- and Na+-coupled phosphate transport systems. Even at extreme growth conditions (low concentrations of extracellular phosphate, alkaline pH values) Y. lipolytica preserved tightly-coupled mitochondria with the fully competent respiratory chain containing three points of energy conservation. This was demonstrated for the first time for cells grown at pH 9.5–10.0. In cells grown at pH 4.5, inorganic phosphate (Pi) was accumulated by two kinetically discrete H+/Pi-cotransport systems. The low-affinity system is most likely constitutively expressed and operates at high Pi concentrations. The high-affinity system, subjected to regulation by both extracellular Pi availability and intracellular polyphosphate stores, is mobilized during Pi-starvation. In cells grown at pH 9.5–10, Pi uptake is mediated by several kinetically discrete Na+-dependent systems that are specifically activated by Na+ ions and insensitive to the protonophore CCCP. One of these, a low-affinity transporter operative at high Pi concentrations is kinetically characterized here for the first time. The other two, high-affinity, high-capacity systems, are derepressible and functional during Pi-starvation and appear to be controlled by extracellular Pi. They represent the first examples of high-capacity, Na+-driven Pi transport systems in an organism belonging to neither the animal nor bacterial kingdoms. The contribution of the H+- and Na+-coupled Pi transport systems in Y. lipolytica cells grown at different pH values was quantified. In cells grown at pH values of 4.5 and 6.0, the H+-coupled Pi transport systems are predominant. The contribution of the Na+/Pi cotransport systems to the total cellular Pi uptake activity is progressively increased with increasing pH, reaching its maximum at pH 9 and higher. Received: 15 December 2000/Revised: 14 May 2001  相似文献   

7.
Titov  I. I.  Schroeder  H.-K. 《Molecular Biology》2001,35(6):950-954
One of the main problems of metabolic engineering is to determine the genetically controlled limiting links of a metabolic network. We have built a model of the primary transport of inorganic phosphates (P i ), analyzed the P i metabolic network in Gram-negative bacteria, and determined the factors controlling the phosphate exchange. The model explains why the P i primary transport is not observed at the release stage. The nonlinearity of primary transport and the differences in its parameters in the membrane and within the cell give rise to transport asymmetry, i.e., the P i release rate is low as compared with the uptake rate, and is small at the background of secondary transport. Discussed is a general scheme of coordination between primary and secondary transport, which are interconnected through the substrate–product relation.  相似文献   

8.
Summary Resting cells ofStaphylococcus aureus displayed a phosphate (Pi) exchange that was induced by growth with glucose 6-phosphate (G6P) orsn-glycerol 3-phosphate (G3P). Pi-loaded membrane vesicles from these cells accumulated32Pi, 2-deoxyglucose 6-phosphate (2DG6P) or G3P by an electroneutral exchange that required no external source of energy. On the other hand, when vesicles were loaded with morpholinopropane sulfonic acid (MOPS), only transport of32Pi (andl-histidine) was observed, and in that case transport depended on addition of an oxidizable substrate (dl-lactate). In such MOPS-loaded vesicles, accumulation of the organic phosphates, 2DG6P and G3P, could not be observed until vesicles were preincubated with both Pi anddl-lactate to establish an internal pool of Pi. Thistrans effect demonstrates that movement of 2DG6P or G3P is based on an antiport (exchange) with internal Pi.Reconstitution of membrane protein allowed a quantitative analysis of Pi-linked exchange. Pi-loaded proteoliposomes and membrane vesicles had comparable activities for the homologous32PiPi exchange (K i's of 2.2 and 1.4mm;V max's of 180 and 83 nmol Pi/min per mg protein), indicating that the exchange reaction was recovered intact in the artificial system. Other work showed that heterologous exchange from either G6P- or G3P-grown cells had a preference for 2DG6P (K i=27 m) over G3P (K i=1.3mm) and Pi (K i=2.2mm), suggesting that the same antiporter was induced in both cases. We conclude that32PiPi exchange exhibited by resting cells reflects operation of an antiporter with high specificity for sugar 6-phosphate. In this respect, Pi-linked antiport inS. aureus resembles other examples in a newly described family of bacterial transporters that use anion exchange as the molecular basis of solute transport.  相似文献   

9.
Chlamydiales and Rickettsiales as metabolically impaired, intracellular pathogenic bacteria essentially rely on “energy parasitism” by the help of nucleotide transporters (NTTs). Also in plant plastids NTT-type carriers catalyze ATP/ADP exchange to fuel metabolic processes. The uptake of ATP4-, followed by energy consumption and the release of ADP3-, would lead to a metabolically disadvantageous accumulation of negative charges in form of inorganic phosphate (Pi) in the bacterium or organelle if no interacting Pi export system exists. We identified that Pi is a third substrate of several NTT-type ATP/ADP transporters. During adenine nucleotide hetero-exchange, Pi is cotransported with ADP in a one-to-one stoichiometry. Additionally, Pi can be transported in exchange with solely Pi. This Pi homo-exchange depends on the presence of ADP and provides a first indication for only one binding center involved in import and export. Furthermore, analyses of mutant proteins revealed that Pi interacts with the same amino acid residue as the γ-phosphate of ATP. Import of ATP in exchange with ADP plus Pi is obviously an efficient way to couple energy provision with the export of the two metabolic products (ADP plus Pi) and to maintain cellular phosphate homeostasis in intracellular living “energy parasites” and plant plastids. The additional Pi transport capacity of NTT-type ATP/ADP transporters makes the existence of an interacting Pi exporter dispensable and might explain why a corresponding protein so far has not been identified.Most organisms possess the capacity to resynthesize the fundamental energy currency ATP by fusion of ADP and Pi. Generally, in eukaryotes the major part of energy is produced in specialized organelles, the mitochondria. Mitochondrial ADP/ATP carriers (AACs)2 mediate the export of newly synthesized ATP in strict counter-exchange with cytosolic ADP and therefore provide energy to the cellular metabolism (1). Plants additionally generate high amounts of ATP during photosynthesis in chloroplasts. However, under conditions of limiting or missing photosynthetic activity, plant plastids depend on external energy supply (24). Specific nucleotide transporters (NTTs) located in the inner plastid envelope membrane mediate the required energy import (5). These transporters structurally, functionally, and phylogenetically differ from mitochondrial AACs. They catalyze the import of cytosolic ATP in exchange with stromal ADP, are monomers consisting of 12 predicted transmembrane helices, and are related to the functionally heterogeneous group of bacterial NTTs (5).Although most prokaryotic organisms are able to regenerate ATP and therefore are considered as energetically self-sustaining, the obligate intracellular living bacterial orders Chlamydiales and Rickettsiales are impaired in energy and nucleotide synthesis or even completely lost the corresponding pathways (68). Therefore, these bacteria, which comprise important human pathogens (9, 10), essentially rely on nucleotide and energy import. Bacterial NTTs catalyze the required import of a broad range of nucleotides and NAD or facilitate the counter-exchange of ATP and ADP (5, 1115). The latter process has been termed “energy parasitism” and obviously is of high importance for the survival of rickettsial and chlamydial cells (5, 1618).Although import measurements on intact Escherichia coli cells expressing the corresponding proteins allowed characterization of many bacterial and plastidial NTTs (1215, 1924), a very important physiological question is still not clarified. The uptake of ATP4- in exchange with ADP3- in absence of a concerted Pi export would result in a charge difference and a phosphate imbalance in the bacterial cell. In mitochondria, phosphate carriers metabolically cooperate with AACs because they provide Pi for ATP synthesis (25). Similarly, it was assumed that NTT-type ATP/ADP transporters cooperate with phosphate exporters to guarantee phosphate homeostasis in the bacterium or plastid. However, a Pi exporter interacting with ATP/ADP transporters is not known in “energy parasites” or plant plastids. Bacterial and plant phosphate transport systems rather facilitate Pi import or the counter-exchange of Pi and phosphorylated compounds and therefore do not allow net Pi export (2629). Furthermore, the newly identified plastidial (proton-driven) phosphate transporters are not preferentially expressed under conditions or in tissues that require ATP provision to the plastid (30, 31).Recently, we succeeded in the purification of the first recombinant NTT from Protochlamydia amoebophila (PamNTT1), a parachlamydial endosymbiont of the protist Acantamoeba (32). The functional reconstitution of the highly pure PamNTT1 into artificial lipid vesicles for the first time allowed the biochemical characterization of a representative nonmitochondrial ATP/ADP transporter unaffected by the complex metabolic situation of the bacterial cell. We demonstrated that in contrast to mitochondrial AACs, PamNTT1 catalyzes a membrane potential independent, electroneutral adenine nucleotide hetero-exchange (32, 33). The latter could argue for a cotransport of a counterion compensating for the electrogenic ATP4-/ADP3- exchange.Here, we investigated possible ions accompanying ATP or ADP transport. Interestingly, we uncovered that PamNTT1 and also rickettsial and plastidial ATP/ADP transporters accept an additional important substrate, which is Pi. We performed a comprehensive characterization of the Pi transport and gained new insights into the transport properties of ATP/ADP transporters.  相似文献   

10.
11.
12.
Regulation of phosphate starvation responses in higher plants   总被引:8,自引:0,他引:8  

Background

Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (Pi), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance Pi acquisition and avoid starvation.

Scope

Controlling the deployment of adaptations used by plants to avoid Pi starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding Pi availability. In this review, the current knowledge of the regulatory mechanisms that control Pi starvation responses and the local and long-distance signals that may trigger Pi starvation responses are discussed. Uncharacterized mutants that have Pi-related phenotypes and their potential to give us additional insights into regulatory pathways and Pi starvation-induced signalling are also highlighted and assessed.

Conclusions

An impressive list of factors that regulate Pi starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to Pi availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low Pi environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving Pi acquisition in crop plants.  相似文献   

13.
L1210 cells transport Pi in the absence of added Na+. Uptake shows saturation kinetics (Kt = 1.7 mM), is temperature-dependent, and can be reduced 80% by high levels of unlabeled Pi, and thus has the characteristics of a carrier-mediated process. This transport process is also inhibited by methotrexate. The methotrexate-sensitive component constitutes half of total Pi uptake, and is reduced by 50% at a concentration of methotrexate (2 μM) that is comparable to its Kt (1.5 μM) for transport into the cells. An impermeable fluorescent analog of methotrexate and an irreversible inhibitor of the methotrexate transport system (carbodiimide-activated methotrexate) also inhibit this same Pi uptake component. It is concluded that methotrexate and Pi can be transported by the same carrier system. The basis for this shared uptake is suggested to be that the methotrexate carrier protein facilitates the obligatory exchange of extracellular folate compounds for intracellular divalent anions, and that a primary exchange anion is Pi. A principal energy source for active transport of methotrexate might then be the concentration gradient for Pi that is maintained by the Na+-dependent, Pi transport system of these cells.  相似文献   

14.
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (Pi). To better understand phosphorus movement between the bacteroid and the host plant, Pi transport was characterized in R. tropici. We observed two Pi transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The Km and Vmax values for the low-affinity system were estimated to be 34 ± 3 μM Pi and 118 ± 8 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively, and the Km and Vmax values for the high-affinity system were 0.45 ± 0.01 μM Pi and 86 ± 5 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively. Both systems were inducible by Pi starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but Pi transport through both systems was eliminated by the ATPase inhibitor N,N′-dicyclohexylcarbodiimide; the Pi transport rate was correlated with the intracellular ATP concentration. Also, Pi movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both Pi transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.  相似文献   

15.
16.
The response of plants to Pi limitation involves interplay between root uptake of Pi, adjustment of resource allocation to different plant organs and increased metabolic Pi use efficiency. To identify potentially novel, early‐responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 d of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi, Tyr and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi. Combining these data with 15N metabolic labelling, we show that over the first 48 h of Pi limitation, metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.  相似文献   

17.
Inorganic phosphate (Pi) is abundant in cells and tissues as an important component of nucleic acids and phospholipids, a source of high‐energy bonds in nucleoside triphosphates, a substrate for kinases and phosphatases, and a regulator of intracellular signaling. The majority of the body's Pi exists in the mineralized matrix of bones and teeth. Systemic Pi metabolism is regulated by a cast of hormones, phosphatonins, and other factors via the bone‐kidney‐intestine axis. Mineralization in bones and teeth is in turn affected by homeostasis of Pi and inorganic pyrophosphate (PPi), with further regulation of the Pi/PPi ratio by cellular enzymes and transporters. Much has been learned by analyzing the molecular basis for changes in mineralized tissue development in mutant and knock‐out mice with altered Pi metabolism. This review focuses on factors regulating systemic and local Pi homeostasis and their known and putative effects on the hard tissues of the oral cavity. By understanding the role of Pi metabolism in the development and maintenance of the oral mineralized tissues, it will be possible to develop improved regenerative approaches. Birth Defects Research (Part C) 84:281–314, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Characterization of inorganic phosphate transport in osteoclast-like cells   总被引:1,自引:0,他引:1  
Osteoclasts possess inorganic phosphate (Pi) transport systems to take up external Pi during bone resorption. In the present study, we characterized Pi transport in mouse osteoclast-like cells that were obtained by differentiation of macrophage RAW264.7 cells with receptor activator of NF-B ligand (RANKL). In undifferentiated RAW264.7 cells, Pi transport into the cells was Na+ dependent, but after treatment with RANKL, Na+-independent Pi transport was significantly increased. In addition, compared with neutral pH, the activity of the Na+-independent Pi transport system in the osteoclast-like cells was markedly enhanced at pH 5.5. The Na+-independent system consisted of two components with Km of 0.35 mM and 7.5 mM. The inhibitors of Pi transport, phosphonoformic acid, and arsenate substantially decreased Pi transport. The proton ionophores nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone as well as a K+ ionophore, valinomycin, significantly suppressed Pi transport activity. Analysis of BCECF fluorescence indicated that Pi transport in osteoclast-like cells is coupled to a proton transport system. In addition, elevation of extracellular K+ ion stimulated Pi transport, suggesting that membrane voltage is involved in the regulation of Pi transport activity. Finally, bone particles significantly increased Na+-independent Pi transport activity in osteoclast-like cells. Thus, osteoclast-like cells have a Pi transport system with characteristics that are different from those of other Na+-dependent Pi transporters. We conclude that stimulation of Pi transport at acidic pH is necessary for bone resorption or for production of the large amounts of energy necessary for acidification of the extracellular environment. Na+-dependent phosphate cotransporter; RAW264.7; phosphate uptake  相似文献   

19.
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low Pi concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity Pi transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low Pi medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both Pi transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm.  相似文献   

20.
Dietary phosphate (Pi) restriction increases renal Pi reabsorption and induces resistance to the phosphaturic action of parathyroid hormone. Na+-gradient-stimulated Pi transport in membrane vesicles isolated from the renal brush border of experimental animals has been shown to parallel changes in renal Pi reabsorption induced by dietary Pi restriction and in vivo administration of parathyroid hormone. Dietary Pi restriction has been shown to markedly inhibit the phosphaturic response to parathyroid hormone in rats and dogs. Parathyroid hormone has been reported not to decrease the Na+-gradient-stimulated transport of Pi in brush border membrane vesicles isolated from dietary Pi restricted rats unless the rats were administered an acute Pi load prior to killing, however, thyroparathyroidectomy of rats fed a low Pi diet has been reported to increase Na+-gradient-stimulated Pi transport. Using the dietary Pi restricted dog, we demonstrated no significant decrease in renal reabsorption of Pi in response to parathyroid hormone administration. However, significant decreases in Pi transport in brush border membrane vesicles isolated from the kidneys of dietary Pi restricted dogs were observed in response to in vivo parathyroid hormone administration. These data demonstrate that the resistance to the phosphaturic action of parathyroid hormone observed in vivo does not include resistance to the inhibitory effect of parathyroid hormone on Pi transport in brush border membrane vesicles. Thus, the data suggest that parathyroid hormone continues to alter Pi transport characteristics of the brush border membrane in states of Pi depletion despite the resistance to parathyroid hormone seen in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号