首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuolar H+-ATPase (V-ATPase) acidifies compartments of the vacuolar system of eukaryotic cells. In renal epithelial cells, it resides on the plasma membrane and is essential for bicarbonate transport and acid-base homeostasis. The factors that regulate the H+-ATPase remain largely unknown. The present study examines the effect of glucose on H+-ATPase activity in the pig kidney epithelial cell line LLC-PK1. Cellular pH was measured by performing ratiometric fluorescence microscopy using the pH-sensitive indicator BCECF-AM. Intracellular acidification was induced with NH3/NH4+ prepulse, and rates of intracellular pH (pHi) recovery (after in situ calibration) were determined by the slopes of linear regression lines during the first 3 min of recovery. The solutions contained 1 µM ethylisopropylamiloride and were K+ free to eliminate Na+/H+ exchange and H+-K+-ATPase activity. After NH3/NH4+-induced acidification, LLC-PK1 cells had a significant pHi recovery rate that was inhibited entirely by 100 nM of the V-ATPase inhibitor concanamycin A. Acute removal of glucose from medium markedly reduced V-ATPase-dependent pHi recovery activity. Readdition of glucose induced concentration-dependent reactivation of V-ATPase pHi recovery activity within 2 min. Glucose replacement produced no significant change in cell ATP or ADP content. H+-ATPase activity was completely inhibited by the glycolytic inhibitor 2-deoxy-D-glucose (20 mM) but only partially inhibited by the mitochondrial electron transport inhibitor antimycin A (20 µM). The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (500 nM) abolished glucose activation of V-ATPase, and activity was restored after wortmannin removal. Glucose activates V-ATPase activity in kidney epithelial cells through the glycolytic pathway by a signaling pathway that requires PI3K activity. These findings represent an entirely new physiological effect of glucose, linking it to cellular proton secretion and vacuolar acidification. proton secretion; glycolysis; intracellular pH; concanamycin A  相似文献   

2.
The effects of light on the pH in the vacuole and the electricpotential difference across the plasmalemma and the tonoplastof Nitellopsis obtusa were investigated by means of conventionaland H+-specific glass or antimony microelectrodes. Illuminationis found to bring about a decrease in the pH of the vacuolarsap by 0.1–0.5 units concomitant with a depolarizationof the cell. The light-induced changes of the potential differenceand the vacuolar pH depend in different ways on the pH of theexternal medium (pHo). At pHo 9.0 cells exhibit great light-inducedpotential changes (up to 100 mV), but only small pH changesof the vacuolar sap. At neutral or slightly acidic pHo valuesthe amplitude of the light-induced pH changes in the vacuoleincreases up to 0.3–0.5 pH units, but the amplitudes ofthe potential changes at the plasmalemma are relatively small.At pHo 9.0 a transient acidification of the medium is observedupon illumination whereas at lower pH values light-induced alkalinizationwas only seen. Transfer of the cells from pHo 9.0 to pHo 7.5results in a cell hyperpolarization by 60–80 mV and adecrease of the vacuolar pH by 0.4–0.5 units under lightconditions but has no significant effect on the potential andthe vacuolar pH in the darkness. It is proposed that mechanismsof active H+ extrusion from the cytoplasm are located both inthe plasmalemma and the tonoplast. The observed acidificationin the vacuole appears to be determined by a light-induced increaseof the concentration of H+ in the cytoplasm. The H+ conductionof the plasmalemma seems to increase on illumination. The patternof the light-induced H+ fluxes across the tonoplast and theplasmalemma depends crucially on the extent of the light-inducedchanges in the H+ conductance and on the electrochemical gradientfor H+ at the plasmalemma.  相似文献   

3.
Ionic composition of the vacuolar sap of Noctiluca miliariswas as follows: [Na+] = 487.3 mM, [K+]=24.1 mM, [Ca2+]=6.6 mM,[Mg2+]=2.8 mM, [Cl]=500mM, [NH4+]=15–25 mM, and[SO42–]=undetectable. To measure the vacuolar pH of singleliving cells, a pH-sensitive glass microelectrode was used.The vacuolar pH value was 3.50 ±0.18. When the cellswere transferred from normal sea water into osmotically adjusted50% sea water for one day, the vacuolar ion concentrations remainedalmost constant. Upon immersing the cells in osmotically unadjustedsea water of various concentrations for one day, the observedincrements or decrements of the vacuolar ion concentrationscould be accounted for largely by the migration of water outof or into the cells. The intrinsic ionic composition of thevacuole seems to be constant against changes in ion concentrationsof the bathing medium. (Received October 20, 1975; )  相似文献   

4.
Work addressing whether cystic fibrosistransmembrane conductance regulator (CFTR) plays a role in regulatingorganelle pH has remained inconclusive. We engineered a pH-sensitiveexcitation ratiometric green fluorescent protein (pHERP) and targetedit to the Golgi with sialyltransferase (ST). As determined byratiometric imaging of cells expressing ST-pHERP, Golgi pH(pHG) of HeLa cells was 6.4, while pHG ofmutant (F508) and wild-type CFTR-expressing (WT-CFTR) respiratoryepithelia were 6.7-7.0. Comparison of genetically matched F508and WT-CFTR cells showed that the absence of CFTR statisticallyincreased Golgi acidity by 0.2 pH units, though this small differencewas unlikely to be physiologically important. Golgi pH was maintainedby a H+ vacuolar (V)-ATPase countered by a H+leak, which was unaffected by CFTR. To estimate Golgi proton permeability (PH+), we modeledtransient changes in pHG induced by inhibiting the V-ATPaseand by acidifying the cytosol. This analysis required knowing Golgibuffer capacity, which was pH dependent. Our in vivo estimate is thatGolgi PH+ = 7.5 × 104 cm/s when pHG = 6.5, andsurprisingly, PH+ decreased aspHG decreased.

  相似文献   

5.
Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit (n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 (n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% (n = 20) in -buffered medium and by 58% (n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction. hyperoxic hyperventilation; O2 toxicity; pH regulation; brain stem; reactive oxygen species  相似文献   

6.
Continuous measurements of cytoplasmic pH (pHc) in Sinapis roothairs have been carried out with double-barrelled pH-micro-electrodesin order to gain information on translocation of protons acrossthe plasmalemma and cytoplasmic pH control. (i) The cytoplasmicpH of Sinapis (7–33 ? 0–12, standard conditions)changes no more than 0.1 pHc, per pHo-unit, regardless of whethercyanide is present or not. (ii) Weak acids rapidly acidify pHcand hyperpolarize, while weak bases alkalize pHc and depolarizethe cells, (iii) 1.0 mol M,3 NaCN acidifies the cytoplasm by0.4 to 0.7 pH-units, but alkalizes the vacuole. (iv) 20 mmolm–3 CCCP has no significant effect on pHc, if added atpH 9.6 or 7.2, but acidifies pHc by 1.3 units at pH 4.3. Inthe presence of CCCP, cyanide acidifies the cytoplasm, (v) Chloridetransiently acidifies pHc, while K+, Na+, and have no significant effects, (vi) Cytoplasmic buffer capacityforms a bell-shaped curve versus pHc with an optimum of about50 mol m–3 H+pHc-unit. The modes of proton re-entry and the effects of active and passiveproton transport on cellular pH control are critically discussed.It is suggested that the proton leak, consisting of H+-cotransport(e.g. H+/Cl) rather than H+-uniport, is no threat topHc. The proton export pump, although itself reacting to changesin pHc, influences pHc only to a minor extent. It is concludedthat buffer capacity and membrane transport play moderate rolesin pHc control in Sinapis, while the interlocked H+-producingand -consuming reactions of cellular metabolism are the mainregulating factors. This makes pH control in Sinapis quite differentfrom bacterial and animal cells. Key words: Cytoplasmic pH, double-barrelled pH micro-electrode, pH control, proton transport, Sinapis  相似文献   

7.
Photoautotrophic cell suspension cultures of Chenopodium rubrumrequire high concentrations of nitrate and ammonium. Duringthe growth phase total NH4+ and the greater portion of NH3were consumed. During the stationary phase nitrate uptake continuedbut at a substantially smaller rate than during the growth phase.During growth the bulk of the absorbed N was incorporated intoprotein, the amount of which was then maintained constant untilsenescence. NH3 was accumulated upon transition betweenthe growth and the stationary phase. NH3, like the freeamino acids, was deposited in the vacuole but, unlike thesecompounds, could not be remobilized upon transfer of the cellsinto N-free medium. Readdition of NH4+ to the medium, however,resulted in a mobilization of the vacuolar NH3-pool.Reutilization of both vacuolar N-storage pools must have beenaccomplished by recycling from the vacuole to the cytoplasmbecause N-metabolizing enzymes could not be detected in isolatedvacuoles. Transfer of the cells of the stationary phase intomedium containing NH3 and NH4+ resulted in an inductionof nitrate uptake by the cells, but only after a lag phase of4–5 days. It is conceivable that NH4+ induces NH3-translocatingsystems in the plasmalemma and in the tonoplast. (Received December 19, 1988; Accepted March 2, 1989)  相似文献   

8.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C–1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C–1 between 25 and 15?C, but 0.005 units?C–1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the –0.017units ?C–1 needed to maintain a constant H+/OH–1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2–HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma.  相似文献   

9.
We report, for the epithelialNa+ channel (ENaC) in A6 cells,the modulation by cell pH (pHc)of the transepithelial Na+ current(INa), thecurrent through the individual Na+channel (i), the openNa+ channel density(No), and thekinetic parameters of the relationship betweenINa and theapical Na+ concentration. Thei andNo were evaluatedfrom the Lorentzian INa noise inducedby the apical Na+ channel blocker6-chloro-3,5-diaminopyrazine-2-carboxamide.pHc shifts were induced, understrict and volume-controlled experimental conditions, byapical/basolateral NH4Cl pulses orbasolateral arrest of theNa+/H+exchanger (Na+ removal; block byethylisopropylamiloride) and were measured with the pH-sensitive probe2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Thechanges in pHc were positivelycorrelated to changes inINa and theapically dominated transepithelial conductance. The sole pHc-sensitive parameter underlyingINa wasNo. Only thesaturation value of theINa kinetics wassubject to changes in pHc.pHc-dependent changes inNo may be causedby influencingPo, the ENaC openprobability, or/and the total channel number,NT = No/Po.

  相似文献   

10.
In the aquatic liverwort Riccia fluitans the regulation of theplasma membrane H+/amino acid symport has been investigated.Cytosolic pH (pHc), membrane potential (Em) and membrane conductancehave been measured and related to transport data, (i) The releaseof [14C]amino acids is strongly stimulated by cytosolic acidification,induced by the external addition of acetic acid, a decreasein external K+, and in the change from light to dark. On average,a decrease in pHc of 0.5 to 0.6 units corresponded with a 4-foldstimulation in amino acid efflux. (ii) External pH changes havefar less effect on substrate transport than the cytosolic pHshifts of the same order. (iii) The inwardly directed positivecurrent, induced by amino acids, is severely inhibited by cytosolicacidification. (iv) Fusicoccin (FC) stimulates amino acid uptakewithout considerable change in proton motive force. (v) Whenthe proton motive force is kept constant, the uptake of aminoacids into Riccia thalli is much lower than when the pump isdeactivated. It is suggested that both the proton pump activityand cytosolic pH are the dominant factors in the regulationof the H+/amino acid symport across the plasma membrane of Ricciafluitans, and it is concluded that the proton motive force isnot a reliable quantity to predict and interpret transport kinetics. Key words: Amino acid, cytosolic pH, pH-sensitive electrode, proton motive force, regulation, Riccia fluitans  相似文献   

11.
Aqueous humorsecretion is in part linked to transport by nonpigmented ciliary epithelium (NPE) cells. During thisprocess, the cells must maintain stable cytoplasmic pH(pHi). Because a recent reportsuggests that NPE cells have a plasma membrane-localized vacuolarH+-ATPase, the present study wasconducted to examine whether vacuolar H+-ATPase contributes topHi regulation in a rabbit NPEcell line. Western blot confirmed vacuolarH+-ATPase expression as judged byH+-ATPase 31-kDa immunoreactivepolypeptide in both cultured NPE and native ciliary epithelium.pHi was measured using2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF).Exposing cultured NPE to K+-richsolution caused a pHi increase weinterpret as depolarization-induced alkalinization. Alkalinization wasalso caused by ouabain or BaCl2. Bafilomycin A1 (0.1 µM; aninhibitor of vacuolar H+-ATPase)inhibited the pHi increase causedby high K+. ThepHi increase was also inhibited byangiotensin II and the metabolic uncoupler carbonyl cyanidem-chlorophenylhydazone but not by ZnCl2,4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid(SITS), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), omeprazole, low-Clmedium, -free medium, orNa+-free medium. BafilomycinA1 slowed thepHi increase after an NH4Cl (10 mM) prepulse. However,no detectable pHi change was observed in cells exposed to bafilomycinA1 under control conditions. Thesestudies suggest that vacuolarH+-ATPase is activated bycytoplasmic acidification and by reduction of the protonelectrochemical gradient across the plasma membrane. We speculate thatthe mechanism might contribute to maintenance of acid-base balance inNPE.

  相似文献   

12.
Effects of removal of external Ca2+ on the cytoplasmic pH (pHc)of Chara corallina have been measured with the weak acid 5,5-dimethyl-oxazolidine-2,4-dione(DMO) as a function of external pH (pH0) and of the externalconcentration of K+. Removal of Ca2+ always decreased pHc whenpH0 was below about 6.0; the decrease was about 0.2–0.4units at pH0 5.0, increasing to about 0.5 units at pH0 4.3.When pH0 was 6.0 or higher the removal of Ca2+ had little orno effect on pHc. This situation was not altered by changingthe concentration of K+, though in some experiments at pH0 5.0–5.2there was a slight decrease in pH0 (about 0.2 units) when K+was increased from 0.2 to 2.0 mol m–3, an effect apparentlyreversed when K+ was higher (5.0 or 10.0 mol m–3). Theresults suggest that H+ transport continues in the absence ofexternal Ca2+, despite previous suggestions to the contrary,and that the H+ pump does not necessarily run near thermodynamicequilibrium with its chemical driving reaction. They indicate,rather, that the H+ pump is under kinetic control and providefurther evidence for the inadequacy of present models for theoperation of the H+ pump in charophyte cells, especially inrelation to its proposed role in regulating pHc. Key words: Chara corallina, Cytoplasmic pH, Calcium  相似文献   

13.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

14.
Using glass capillary microelectrodes for the measurement ofpotential differences (PD) and antimony microelectrodes forthe measurement of pH, we investigated the light-induced changesof PD between the central vacuole and the external medium, ofpH in the vacuole (pHv), as well as of pH in the external medium(pHo) of the green marine alga Valonia ventricosa. PD in thedark was about +30 to +40 mV (vacuole positive), pHv 6.3, andthe resistance of the protoplast (cell wall-plasmalemma-tonoplast)17.8 kOhm cm2. Illumination caused an increase of the positivePD (after a few oscillations) up to +80 to +100 mV, acidificationof the vacuolar sap, alkalinization of the external medium,and a decrease in the resistance of the protoplast to 7.6 kOhmcm2. The kinetics of the changes of PD, pHv, and pHo were similarto each other. It is concluded that a light-stimulated activeH+ flow occurs from the external medium into the central vacuoleof Valonia ventricosa as a result of the onset of photosyntheticactivity.  相似文献   

15.
The effects of the growth in a medium containing NH4NO3 as nitrogensource were studied on cell sap pH, cytoplasmic pH and malatecontent in chl1, an Arabidopsis thaliana mutant impaired inchlorate and nitrate transport. In all the conditions testedthe pH of the cytoplasm in chl1 was more alkaline, and thatof the vacuole was more acidic as compared with those measuredin wt. Treatment with bafilomycin A1, a specific inhibitor ofthe vacuolar H+-ATPase, induced a small alkalinization of thevacuole, and a significant acidification of the cytoplasm, theseeffects being greater in chl1 than in wt. The greater responseof the mutant to bafilomycin Al suggests that, in the absenceof the inhibitor, the activity of the tonoplast H+-ATPase inchl1 is higher than in wt, this diversity being a possible reasonfor the differences in intracellular pH detected between thetwo strains. A possible role for the vacuolar H+-ATPase in regulatingthe cytoplasmic pH is discussed. (Received August 2, 1995; Accepted February 1, 1996)  相似文献   

16.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

17.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

18.
Light-induced changes of cytosolic pH (pHc) and the plasmalemmapotential (Em) in dark-adapted leaf cells of the aquatic plant,Egeria densa were measured simultaneously with double-barreledpH-sensitive microelectrodes. Upon illumination, pHc increasedtransiently and then decreased to a level that was lower thanthe original value, while the plasmalemma was greatly hyperpolarizedafter an initial small depolarization. DCMU inhibited the light-inducedchanges in both pHc and Em. DCMU acted without directly inhibitingthe electrogenic proton pump in the plasmalemma since a decreasein pHc caused by treatment with butyrate (H+-loading) hyperpolarizedthe plasmalemma in DCMU-pretreated cells. N.N-Dicyclohexylcarbodiimide(DCCD) also inhibited the light-induced changes in both pHcand Em. This result may be explained by direct inhibition ofthe proton pump in the plasmalemma by DCCD since the decreasein pHc caused by butyrate did not induce membrane hyperpolarizationin DCCD-treated leaf cells. Fusicoccin induced membrane hyperpolarizationand slight acidification of the cytosol. DCCD inhibited thefusicoccin-induced changes in both pHc and Em. The mechanismof the light-induced changes in pHc is discussed in relationto activities of the proton pump in the plasmalemma and photosynthesis. (Received January 10, 1994; Accepted June 9, 1994)  相似文献   

19.
Uptake capabilities for ammonium (NH4+) and urea by diatoms(Thalassiosira pseudonana and Skeletonema costatum) growingon oxidized forms of nitrogen were studied in short-term uptakeexperiments. Even when nutrient-saturated, an enhanced uptakecapability not coupled with the growth rate was present forNH4+ and urea. No such enhanced uptake ability was seen forNO2 or NO3 under either nutrient-saturated ornutrient-depleted conditions. The presence of NH4+ decreasedthe enhanced ability to take up urea, but the urea uptake ratein 5 min incubations remained greater than the growth rate evenwhen NH4+ was present.  相似文献   

20.
36C1O3/NO3 influx into Chara cells was found to be sensitiveto pHo and a maximum was found at pHo = 4.5. By contrast 14Cmethylamine influx into Chara showed a maximum at pHo = 8.5,and at this pHo influx rates were about 150 times higher thanrates of 36C1O3/NO3 influx. However, at pHo = 4.5, 36C1O3/NO3influx rates were, in some cases, comparable with rates of 14Cmethylamine influx. 36C1O3/NO3 influx into Chara cells was stimulatedby Rb +, K+, Na +, and NH4+, but not by Cs+ or Li +. NO3 andCl reduced 14C methylamine influx into Chara by 30%. NH4+ causedvery considerable inhibition of 14C methylamine influx intoChara, but had no effect on 36C1O3/NO3 influx in the presenceof K +. Net NO3 uptake into Chara was completely prevented byNH4+ even at relatively low NH4+ concentrations (25 mmol m –3).This latter effect was reversed by diethylstilbestrol (DES).Evidence is presented for the stimulation of NO3 efflux by NH4+as the mechanism responsible for the immediate effects of NH4+on net NO3 uptake into Chara cells. Key words: Chara, 14C methylamine, 36ClO3, pH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号