首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distal meta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.  相似文献   

3.
A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distal meta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.  相似文献   

4.
Fluorescent-antibody techniques using Zoogloea ramigera 106 antiserum were used to study fresh activated sludge flocs and finger-like zoogloeae in the microbial film that developed over stored samples of activated sludge. Few cells in fresh activated sludge reacted positively with the fluorescein-labeled antiserum. Finger-like zoogloeae containing reactive cells were readily observed in the microbial film layer over stored activated sludge. Certain of the natural finger-like projections were entirely composed of cells that reacted positively to the labeled Z. ramigera 106 antiserum, whereas other projections were devoid of reactive cells.  相似文献   

5.
Sphaerotilus natans, one of the most widely reported causes of bulking in activated sludge, can exist both within and outside of a sheath. It can easily be confused with similar activated sludge bacteria and thus can be overlooked when present in low numbers. Fluorescent antiserum was successfully prepared against the nonfilamentous form and was shown to be highly specific, showing no reaction with either pure cultures of similar filamentous bacteria or entirely unrelated organisms. It did, however, show a lack of strain specificity since it reacted with S. natans isolates from the Federal Republic of Germany and the United States and with filamentous bacteria in South African activated sludges. Fluorescent antibody is capable of penetrating the filaments of S. natans to stain the cells individually. The use of fluorescent antiserum in the identification of S. natans filaments obscured by activated sludge flocs and other suspended matter was simple since the cells stained brightly and could be observed through the less dense matter, while the use of other microscope techniques would be hampered by these obstructions. The use of fluorescent antibody will facilitate ecological studies of S. natans in activated sludge and other aqueous environments.  相似文献   

6.
We use a nonsteady-state model to evaluate the effects of community adaptation and sorption kinetics on the fate of linear alkylbenzene sulfonate (LAS) in batch experiments conducted with activated sludge that was continuously fed different concentrations of LAS. We observed a sharp decrease in the biodegradation rate between 30 and 60 minutes and the presence of an LAS residual at the end of the batch experiments. The modeling analysis indicates that these phenomena were caused by relatively slow inter-phase mass transport of LAS. The modeling analyses also showed that the amount of LAS-degrading biomass increased when the continuous activated sludge was fed a higher LAS concentration. Although community adaptation to LAS involved accumulation of more LAS degraders, the increase was not proportional to the feed concentration of LAS, which supports the concept that LAS degraders also utilized portions of the general biochemical oxygen demand (BOD) fed to the continuous activated sludge systems.  相似文献   

7.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Structural shifts associated with functional dynamics in a bacterial community may provide clues for identifying the most valuable members in an ecosystem. A laboratory-scale denitrifying reactor was adapted from use of non-efficient seeding sludge and was utilized to degrade quinoline and remove the chemical oxygen demand. Stable removal efficiencies were achieved after an adaptation period of six weeks. Both denaturing gradient gel electrophoresis profiling of the 16S rRNA gene V3 region and comparison of the 16S rRNA gene sequence clone libraries (LIBSHUFF analysis) demonstrated that microbial communities in the denitrifying reactor and seeding sludge were significantly distinct. The percentage of the clones affiliated with the genera Thauera and Azoarcus was 74% in the denitrifying reactor and 4% in the seeding sludge. Real-time quantitative PCR also indicated that species of the genera Thauera and Azoarcus increased in abundance by about one order of magnitude during the period of adaptation. The greater abundance of Thauera and Azoarcus in association with higher efficiency after adaptation suggested that these phylotypes might play an important role for quinoline and chemical oxygen demand removal under denitrifying conditions.  相似文献   

9.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A monoclonal antibody (2E2) produced against pectate lyase from Erwinia carotovora ssp. carotovora reacted with a 41- and a 44-kilodaltion protein on Western blots of concentrated Erwinia culture supernatants resolved by sodium dodecyl sulfate - polyacrylamide gel electrophoresis. It was unequivocally shown that monoclonal 2E2 reacted with an active form of pectate lyase by affinity purifying the antigen with the monoclonal. The affinity-purified antigen was enzymatically active and moved as a single protein band in a nonequilibrium isoelectric focusing gel. Monoclonal 2E2 reacted with the pectate lyases of a diverse range of E. carotovora ssp. carotovora, ssp. atroseptica, and ssp. betavasculorum strains, as well as with one of three strains of E. chrysanthemi. The electrophoretic mobility of the major protein (44 kilodaltons) that reacted with 2E2 was identical within a subspecies but differed among subspecies.  相似文献   

11.
This paper presents a sanitary analysis of crude and composted activated sewage sludge from the sewage treatment plants in Slawa near Zielona G6ra in the period from September to December 1999. The composts were made from crude active sludge collected on 16.08.1999 with the addition of sawdust in a proportion of 15% with respect to dry sludge matter, and left in film bags with a capacity of 10 litres. Composting was carried out at a temperature of 20 degrees C for 8 weeks. Sanitary analysis of the activated sludge showed that the total quantity of bacteria, fungi, pathogenic bacteria and parasite ova was higher in the summer period compared to the spring period. The quantity of pathogenic bacteria and parasite eggs exceeded the permitted level in activated sludge designated for agricultural use. Analysis of the suitability of composts made from crude activated sludge showed that the quantity of pathogenic bacteria and parasite ova had been reduced, but was still higher than the permitted value for sewage sludge designated for agricultural use.  相似文献   

12.
The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019  相似文献   

13.
Removal of bacteria from wastewater treated with activated sludge was studied by the use of a streptomycin-resistant Escherichia coli strain. The removal appeared to be a biphasic process. A rapid sorption of bacteria to the sludge flocs took place in the first hour after seeding mixed liquor with E. coli. Thereafter, slower elimination of E. coli was observed. The latter process was due to predation on E. coli by ciliated protozoa. This was shown by: (i) appearance of fluorescent food vacuoles of ciliates when fluorescent E. coli cells were added to mixed liquor; (ii) inhibition of predation either in the presence of cycloheximide or under anaerobic conditions; and (iii) absence of predation in bulking and washed sludge.  相似文献   

14.
This paper discusses the poly-beta-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth-order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.  相似文献   

15.
Removal of Escherichia coli in wastewater by activated sludge.   总被引:3,自引:1,他引:2       下载免费PDF全文
Removal of bacteria from wastewater treated with activated sludge was studied by the use of a streptomycin-resistant Escherichia coli strain. The removal appeared to be a biphasic process. A rapid sorption of bacteria to the sludge flocs took place in the first hour after seeding mixed liquor with E. coli. Thereafter, slower elimination of E. coli was observed. The latter process was due to predation on E. coli by ciliated protozoa. This was shown by: (i) appearance of fluorescent food vacuoles of ciliates when fluorescent E. coli cells were added to mixed liquor; (ii) inhibition of predation either in the presence of cycloheximide or under anaerobic conditions; and (iii) absence of predation in bulking and washed sludge.  相似文献   

16.
A method for quantifying bacterial populations introduced into an activated-sludge microbial community is described. The method involves extraction of DNA from activated sludge, appropriate dilution of the extracted DNA with DNA extracted from nonintroduced activated sludge, PCR amplification of a gyrB gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. The adequacy of the method was examined by analyzing the population dynamics of two phenol-degrading bacteria, Pseudomonas putida BH and Comamonas sp. strain E6, that had been introduced into phenol-digesting activated sludge. The density of each of the two populations determined by the PCR method immediately after the introduction was consistent with the density estimated from a plate count of the inoculum. This quantitative PCR method revealed different population dynamics for the two strains in the activated sludge under different phenol-loading conditions. The behavior of both of these strains in the activated sludge reflected the growth kinetics of the strains determined in laboratory axenic cultures.  相似文献   

17.
The present study was undertaken to determine if viruses were selectively eliminated during waste water treatment. Human enteric viruses were detected at all steps of treatment in a conventional activated sludge waste water treatment plant. Liquid overlays and large volume sampling with multiple passages on BGM cells permitted the detection of poliovirus (serotypes 1, 2, and 3), coxsackievirus B (serotypes 1, 2, 3, 4, and 5), and echovirus (serotypes 3, 14, and 22), as well as reoviruses. The mean virus concentration was 95.1 most probable number of infectious units per litre (mpniu/L) in raw sewage, 23.3 in settled water, 1.4 in effluent after activated sludge treatment, and 40.3 mpniu/L in sludge samples. All samples of raw sewage and settled water, 79% of effluent water, and 94% of sludge samples contained viruses. The mean reduction was 75% after settling and 98% after activated sludge treatment. Poliovirus type 3 was rarely isolated after the activated sludge treatment, but was still detected in about one-third of the sludge samples. Reoviruses and coxsackieviruses were detected at similar rates from all samples and appear to be more resistant to the activated sludge treatment than poliovirus type 3. Poliovirus types 1 and 2 were present in almost every sample of raw sewage and settled water and still found in about half of the effluent and sludge samples, indicating a level of resistance similar to that of reoviruses and coxsackieviruses.  相似文献   

18.
Addition of activated sludge taken from the wastewater treatment facilities ofan oil refinery to a soil contaminated with oily sludge stimulated hydrocarbonbiodegradation in microcosms, bioreactors and biopile. Microcosms containing50 g of soil to which 0.07 % (w/w) of activated sludge was added presented ahigher degradation of alkanes (80 % vs 24 %) and polycyclic aromatic hydrocarbons(PAHs) (77 % vs 49 %) as compared to the one receiving only water, after 30days of incubation at room temperature. Addition of ammonium nitrate or sterilesludge filtrate instead of activated sludge resulted in a similar removal of PAHsbut not of alkanes suggesting that the nitrogen contained in the activated sludgeplays a major role in the degradation of PAHs while microorganisms of thesludge are active against alkanes. Addition of sludge also stimulated hydrocarbonbiodegradation in 10-kg bioreactors operated during 60 days and in a 50-m3 biopile operated during 126 days. This biopile treatment allowed the use of the soil for industrial purpose based on provincial regulation (``C' criteria). In contrast, the soil of the control biopile that received only water still exceeded C criteria for C10–C50 hydrocarbons, total PAHs, chrysene and benzo[a]anthracene.The stimulation effect of sludge was stronger on the 4-rings than on 2-rings PAHs.The soil of the biopile that received sludge was 4–5 times less toxic than the control. These results suggest that this particular type of activated sludge could be used to increase the efficiency of the treatment of hydrocarbon-contaminated soils in a biopile.  相似文献   

19.
The survival response of Escherichia coli K12 in a natural environment   总被引:1,自引:0,他引:1  
To verify the hypothesis of cryptic growth and viable but nonculturable (VBNC) state, survival responses of Escherichia coli cells were examined under oligotrophic microcosm conditions for an extended period. In the case of filtered distilled water at 4°C, E. coli cells definitely entered the VBNC state within 56 days. However, culturability and viability increased while the total number of cells declined after 110 days. This phenomenon can be explained by considering three possible states. The first is the existence of the VBNC state, the second is cryptic growth, and the third is the death of E. coli cells. In the case of artificial seawater at 4°C, VBNC E. coli cells confirmed the existence of two log units of elongated VBNC cells. Moreover, elongated VBNC cells showed the most significant change among all the other transformed cells. Also, E. coli cells in microcosms at 28°C indicated the entrance to the classical starvation survival state. In resuscitation tests, 1% diluted Luria-Bertani agar medium showed the highest level of resuscitation among amended agar media. To evaluate the survival ability of E. coli cells in the activated sludge samples, we used an E. colistrain XL-1 blue containing plasmids pQ2 including GFPcDNA (XL/GFP). In supernatant of activated sludge (SUP) at 28°C, XL/GFP cells entered the VBNC state after 10 days, whereas existence of VBNC cells was not detectable in resuspended activated sludge (ACT) at 28°C.  相似文献   

20.
To investigate the bacteria that are important to phosphorus (P) removal in activated sludge, microbial populations were analyzed during the operation of a laboratory-scale reactor with various P removal performances. The bacterial population structure, analyzed by fluorescence in situ hybridization (FISH) with oligonucleotides probes complementary to regions of the 16S and 23S rRNAs, was associated with the P removal performance of the reactor. At one stage of the reactor operation, chemical characterization revealed that extremely poor P removal was occurring. However, like in typical P-removing sludges, complete anaerobic uptake of the carbon substrate occurred. Bacteria inhibiting P removal overwhelmed the reactor, and according to FISH, bacteria of the beta subclass of the class Proteobacteria other than beta-1 or beta-2 were dominant in the sludge (58% of the population). Changes made to the operation of the reactor led to the development of a biomass population with an extremely good P removal capacity. The biochemical transformations observed in this sludge were characteristic of typical P-removing activated sludge. The microbial population analysis of the P-removing sludge indicated that bacteria of the beta-2 subclass of the class Proteobacteria and actinobacteria were dominant (55 and 35%, respectively), therefore implicating bacteria from these groups in high-performance P removal. The changes in operation that led to the improved performance of the reactor included allowing the pH to rise during the anaerobic period, which promoted anaerobic phosphate release and possibly caused selection against non-phosphate-removing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号