首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We examined the correlation between the anti-bacterial activity against Escherichia coli and the cytotoxicity of five synthesized bridge types of bis-quaternary ammonium compounds (bis-QACs) as follows: thioether type, 4,4'-(p-xylydithio)bis(1-octylpyridinium iodide) (4DTBP-X,8); amide type, N,N'-tetramethylenebis(1-dodecyl-4-carbamoylpyridinium iodide) (4BCAP-4,12), N,N'-(phenylene)bis(1-octyl-4-carbamoylpyridinium iodide) (4BCAP-P,8); anti-amide type, 4,4'-(tetramethylenedicarbonyldiamino)bis(1-octylpyridinium iodide) (4DCABP-4,8), 4,4'-(phenylenedicarbonyldiamino)bis(1-octylpyridinium iodide) (4DCABP-P,8); ester type, 4,4'-(1,6-hexamethylenedioxydicarbonyl)bis(1-dodecylpyridinium iodide) (4DOCBP-6,12); and an anti-ester type, 5,5'-[2,2'-(tetramethylenedicarbonyldioxy)diethyl]bis(3-alkyl-4-methylthiazolium iodide) (5DEBT-4,n, The letter n indicates the carbon number of the alkyl group). 5DEBT-4,8 showed low cytotoxicity (LD(50)) to human erythrocytes (97+/-6microM) and the NB1RGB cell line (111+/-20microM) and remarkable anti-bacterial activity (MIC) toward E. coli K12 W3110 (7.9microM). Moreover, 5DEBT-4,8 indicated 1144 conformers by global minimum analysis and had two minimum dGW (solvation free energy) points as well as 4DTBP-6,8, which had been previously examined and concluded to be a significant useful anti-bacterial compound.  相似文献   

2.
Conformational analysis of marchantin A (1), a bis(diarylether) type, and riccardin A (2), a diarylether-biphenyl type macrocyclic bis(bibenzyl) was carried out by systematic unbounded multiple minimum search (SUMM). Mobility of the macrocyclic rings was analysed by variable temperature 1H-NMR study. Molecular similarity analysis was performed on the minimum energy conformers of 1 and 2 comparing their steric, electrostatic and hydrophobic properties. Correlation between complexation properties and calmodulin inhibitor activity was established. Differences in steric and electrostatic profiles may be responsible for the reduced Ca2+ affinity and activity of 2.  相似文献   

3.
A facile synthesis of 5,5'-(1,4-phenylene)bis(3-aryl-2-pyrazolines) 4a-g has been achieved by the cyclo-addition reaction of hydrazine hydrate with bis-substituted chalcones 3a-g, which in turn were prepared by the Clasien-Schmidt condensation of p-substituted acetophenones 1a-g with terephthaldehyde. Condensation of 4a-g with omega-bromoalkoxyphthalimides 5a-b afforded the titled compounds 6a-n, some of which exhibited significant antimalarial as well as antimicrobial activity.  相似文献   

4.
Three known phenolic compounds, (-)-(R)-nyasol (= 4,4'-(1Z,3R)-Penta-1,4-diene-1,3-diyldiphenol; 1), its derivative 2, and broussonin A (3)--isolated from the rhizomes of Anemarrhena asphodeloides--were for the first time identified as the active principles capable of efficient respiratory-syncytial-virus (RSV) inhibition. The IC50 values of 1-3 against the RSV-A2 strain, propagated in HEp-2 cells, were determined, their activities being higher than that of the standard antiviral drug ribavirin (IC50 = 1.15 microM). In addition, the known, but inactive, compound 'trans-N-(para-coumaroyl)tyramine' (= (2E)-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; 4) was isolated from this plant for the first time.  相似文献   

5.
Three binuclear Co(III) complexes with 5,5′-(buta-1,3-diyne-1,4-diyl)bis(3-tert-butylcatechol) (L1), 5,5′-(2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L2) and 5,5′-(4,4′-(buta-1,3-diyne-1,4-diyl)bis(2,5-dimethoxy-4,1-phenylene))bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L3) have been prepared. The triple bond-containing L1, L2 and L3 ligands were synthesized by a cross-coupling reaction. These complexes were characterized by elemental analyses, electrochemical measurements, 1H NMR and UV-Vis spectra. In [Co2(bpy)4(L1)]2+, electrochemical oxidation of the complexes occurs at the bridges as two closely spaced one-electron couples. UV-Vis spectra reveal that chemical oxidation of [Co2(bpy)4(L1)]2+ using Ag+ occurs as a two-electron process forming [Co2(bpy)4(L1Cat,SQ)]3+ or [Co2(bpy)4(L1SQ,SQ)]4+. On the other hand, [Co2(bpy)4(L2)]2+ and [Co2(bpy)4(L3)]2+ exhibit different oxidation behavior under the same experimental conditions. In this report we discuss the role of the distance between the two metal atoms on the oxidative behavior of binuclear Co(III) complexes.  相似文献   

6.
The copolymer which has both ligand sites (4-vinylpyridine) and redox sites (N-(p-vinylbenzyl)-3-carbamoyl-1,4-dihydropyridine) was synthesized by the dithionite reduction of the copoly(4-vinylpyridine-N-(p-vinylbenzyl)-3-carbamoylpyridinium chloride) and the reduction of a central ferric-iron of ferriprotoporphyrin IX by the above-described copolymer was studied spectrophotometrically in dimethyl sulfoxide. The rate of the reduction by the copolymer was much faster than by N-benzyl-3-carbamoyl-1,4-dihydropyridine. This acceleration by the copolymer could be explained by the intramolecular reduction of ferriprotoporphyrin IX which was coordinated by the pyridine residue of the copolymer.  相似文献   

7.
In continuation of our investigations of unsymmetrical bisquaternary monooximes, we synthesized four new series of compounds bridged by hexyl, heptyl, octyl and nonyl groups. All eight monooximes viz., dibromides of 1-(4-hydroxyiminomethylpyridinium)6-(3/4-carbamoylpyridinium)hexane, 1-(4-hydroxyiminomethylpyridinium)-7-(3/4-carbamoylpyridinium)heptane, 1-(4-hydroxyiminomethylpyridinium)-8-(3/4-carbamoylpyridinium)octane, 1-(4-hydroxyiminomethylpyridinium)-9-(3/4-carbamoylpyridinium)nonane as well as the corresponding bis-oximes were synthesized and characterized by spectral data. Their ability to reactivate tetraethylpyrophosphate (TEPP) inhibited mouse total brain cholinesterase was investigated and compared with the conventional oxime 2-pyridinealdoxime chloride (2-PAM). Mouse brain homogenate was used as the source of acetylcholinesterase. Among all the compounds, tested the compound with the hexylene bridge (6b) and a 3-carbamoyl group on the second pyridine ring was found to be the most active acetylcholinesterase reactivator (72%) which is greater than that of 2-PAM (56%). However, the activity was reversed; as the chain length increased from a heptylene to a nonylene bridge, they potentiated the inhibitory effect of TEPP rather than reactivation. It is interesting to note that compound 6b with a carbamoyl group at the 3rd position of the pyridine ring showed dose dependent reactivation whereas the corresponding compound 6a with the carbamoyl group present at the 4th position of the pyridine ring showed reactivation at lower concentration (30 microM) and potentiation of TEPP inhibition at higher concentrations (100 and 300 microM).  相似文献   

8.
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.  相似文献   

9.
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.  相似文献   

10.
Three bacteria capable of utilizing bis(4-hydroxyphenyl)methane (bisphenol F [BPF]) as the sole carbon source were isolated from river water, and they all belonged to the family Sphingomonadaceae. One of the isolates, designated Sphingobium yanoikuyae strain FM-2, at an initial cell density of 0.01 (optical density at 600 nm) completely degraded 0.5 mM BPF within 9 h without any lag period under inductive conditions. Degradation assays of various bisphenols revealed that the BPF-metabolizing system of strain FM-2 was effective only on the limited range of bisphenols consisting of two phenolic rings joined together through a bridging carbon without any methyl substitution on the rings or on the bridging structure. A BPF biodegradation pathway was proposed on the basis of metabolite production patterns and identification of the metabolites. The initial step of BPF biodegradation involves hydroxylation of the bridging carbon to form bis(4-hydroxyphenyl)methanol, followed by oxidation to 4,4′-dihydroxybenzophenone. The 4,4′-dihydroxybenzophenone appears to be further oxidized by the Baeyer-Villiger reaction to 4-hydroxyphenyl 4-hydroxybenzoate, which is then cleaved by oxidation to form 4-hydroxybenzoate and 1,4-hydroquinone. Both of the resultant simple aromatic compounds are mineralized.  相似文献   

11.
N,N′-Pyromelliticdiimido-di-l-amino acids (1a1d) were prepared from the reaction of pyromellitic dianhydride with the corresponding l-amino acids in a solution of glacial acetic acid/pyridine (3:2) at refluxing temperature. 4,4′-sulfonyl bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, 4,4′-oxy bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol and 4,4′-methylene bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, were prepared from 4,4′-diamino diphenyl sulfone, 4,4′-diamino diphenyl ether, 4,4′-diamino diphenyl methane, sodium nitrite and phenol following the general procedure of diazo coupling. Interfacial polycondensation method was used to prepare the corresponding poly(azo-ester-imid)s (PAEI 1–12 ) in biphasic solution of water/dichloromethane. The resulting polymers (PAEIs) have been obtained in high yields having good inherent viscosities (0.32–0.57 dl g−1), optical activities and thermal stabilities.  相似文献   

12.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

13.
The syntheses of two new nucleoside phosphoramidites containing a hydroxyl functionality masked by a levulinate protecting group are presented; N(4)-(2-(ethylene glycol-2-levulinate)ethyl)-5-methyl-5'-(4,4'-dimethoxytrityl)-3'-O-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxycytidine 1 and 5-(N-(6-O-levulinoyl-1-aminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 3. Optimization of solid-phase-supported synthetic parameters for incorporation of these into DNA, removal of the levulinate group by exposure to dilute hydrazine, and subsequent attachment of dye labels is described. Synthesis of the known compound 5-(N-(6-trifluoroacetylaminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 2 (1), containing a masked amine at the end of an alkyl chain attached at the 5 position, was also revisited using new techniques developed for 3.  相似文献   

14.
Spermidine and spermine stimulate the activity of T4-DNA ligase   总被引:2,自引:0,他引:2  
When the ability of T4-DNA ligase from E. coli NM 989 to form higher molecular weight polymers from linearized plasmid pJDB 207 was followed, it was observed that physiological concentrations (0.5 to 1.0 mM) of spermidine and spermine greatly stimulated the formation of these polymers. The effect had a strict specificity since 1,3-diaminopropane, putrescine (1,4-diaminobutane) and N1-acetylspermidine neither stimulated nor inhibited this activity of DNA ligase. The structural analogues of spermidine, methyl bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-aminoguanidine) totally abolished the stimulatory effect of spermidine on T4-DNA ligase without affecting the enzyme's basal activity.  相似文献   

15.
Diphosphatidyl[1',2',3'-14C]glycerol (cardiolipin) is converted to bis(monoacylglyceryl)phosphate when incubated in vitro with rat lysosomes at pH 4.4. The stereochemical configuration of the product is unknown. This reaction probably takes place via lysophosphatidylglycerol, one of the major products of diphosphatidylglycerol hydrolysis by lysosomes. Phosphatidyl[1',2',3'-14C]glycerol was introduced into mitochondrial membranes by incubating mitochondria with [U-14C]sn-glycerol-3-phosphate and cytidine diphosphate diacylglycerol. Membrane-bound phosphatidyl[1',2',3'-14C]glycerol is also converted to bis(monoacylglycerol)phosphate when incubated with lysosomes in a reaction that is dependent on the concentration of lysosomal protein and on incubation time. These results support our previous proposal (Poorthuis, B. J. H. M., and K. Y. Hostetler, 1976. J. Biol. Chem. 251: 4596-4602) that bis(monoacylglyceryl)phosphate formation may require the interaction of lysosomes with other membranes that contain the substrates for the reaction. The stereochemistry of bis(monoacylglyceryl)phosphate biosynthesis is discussed.  相似文献   

16.
Oligonucleotides bearing biodegradable phosphate protecting groups have been synthesized on a solid support. For this purpose, two dimeric building blocks, viz. 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2,2-bis(ethoxycarbonyl)-3-(pivaloyloxy)propyl]-P-thiothymidylyl-(3',5')-thymidine 3'-[O-(2-cyanoethyl)-N,N-diisopropylphosphoramidite] (1) and 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2-cyano-2-(2-phenylethylaminocarbonyl)-3-(pivaloyloxy)propyl]thymidylyl-(3',5')-thymidine 3'-(H-phosphonate) (2), were prepared. Phosphoramidite 1 was incorporated into an phosphorothioate oligothymidylate sequence on a base-labile hydroquinone-O,O'-diacetic acid linker (Q-linker) and on a photolabile 4-alkoxy-5-methoxy-2-nitrobenzyl carbonate linker (11). H-Phosphonate 2 was, in turn, incorporated into an oligothymidylate sequence only on the photolabile linker. Kinetics of the removal of the protecting groups by porcine liver esterase and subsequent retro aldol condensation/phosphate elimination were then studied. While the pro-oligonucleotide that contained only one phosphate protection gave the deprotected phosphorothioate oligonucleotide in a quantitative yield, the enzymatic step was markedly decelerated upon increasing the number of protection groups, and hence chain cleavage started to compete.  相似文献   

17.
A new class of polydentate bis(imidazole)-thioether-thiol polydentate ligands has been synthesized by the reactions of functionalized primary amines with bis(2-imidazolyl)nitromethane. The molecules contain a bis(2-imidazolyl)methylamino group attached to chains of varying length with thiol (3, 23) and thioether/thiol (7,11,15,19) binding sites.  相似文献   

18.
An extensive structure-activity relationship study of the 3-position of a series of tricyclic pyrazole-based Chk1 inhibitors is described. As a result, 4'-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-benzonitriles (4) and 4'-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-pyridine-2'-carbonitriles (29) emerged as new lead series. Compared with the original lead compound 2, these new leads fully retain the biological activity in both enzymatic inhibition and cell-based assays. More importantly, the new leads 4 and 29 exhibit favorable physicochemical properties such as lower molecular weight, lower Clog P, and the absence of a hydroxyl group. Furthermore, structure-activity relationship studies were performed at the 6- and 7-positions of 4, which led to the identification of ideal Chk1 inhibitors 49, 50, 51, and 55. These compounds not only potently inhibit Chk1 in an enzymatic assay but also significantly potentiate the cytotoxicity of DNA-damaging agents in cell-based assays while they show little single agent activity. A cell cycle analysis by FACS confirmed that these Chk1 inhibitors efficiently abrogate the G2/M and S checkpoints induced by DNA-damaging agent. The current work paved the way to the identification of several potent Chk1 inhibitors with good pharmacokinetics that are suitable for in vivo study with oral dosing.  相似文献   

19.
Oxovanadium(IV) tetraaza complexes of [14]aneN4: 1,5,8,12-tetraaza-2,9-dioxo-4,11-diphenylcyclotetradecane; [16]aneN4: 1,5,9,13-tetraaza-2,10-dioxo-4,12-diphenylcyclohexadecane; Bzo2[14]aneN4: dibenzo-1,5,8,12-tetraaza-2,9-dioxo-4,11-diphenylcyclotetradecane and Bzo2[16]aneN4: dibenzo-1,5,9,13-tetraaza-2,10-dioxo-4,12-diphenylcyclohexadecane have been encapsulated in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)VO(IV)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); [VO(N-N)2]2+-NaY; in the nanopores of the zeolite-Y and (ii) in situ condensation of the oxovanadium(IV) precursor complex with ethylcinnamate. The new host-guest nanocatalysts were characterized by several techniques: chemical analysis and spectroscopic methods (FT-infrared (FT-IR), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), nitrogen adsorption and diffuse reflectance spectra (DRS)) technique. The analytical data indicated a composition corresponding to the mononuclear complex of tetraaza ligand. The characterization data showed the absence of extraneous complexes, retention of zeolite crystalline structure and encapsulation in the nanopores. Liquid-phase selective hydroxylation of phenol with H2O2 to a mixture of catechol and hydroquinone in CH3CN have been reported using oxovanadium(IV) tetraaza complexes encapsulated in zeolite-Y as catalysts. All these catalysts are more selective toward catechol formation.  相似文献   

20.
Bao F  Feng L  Gao J  Tan Z  Xing B  Ma R  Yan C 《PloS one》2010,5(10):e13629
Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3'-(1,3-phenylene)bis(1-phenylpropane-1,3-dione); ligand 2: 3,3'-(1,4-phenylene)bis(1-phenylpropane-1,3-dione)) were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP) of methyl methacrylate (MMA) with the common initiator of azodiisobutyronitrile (AIBN). The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号