首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of spirochetes to adhere to collagens was compared among three species of human oral treponemes. Immunoblot analysis demonstrated that type I-, IV-, and V-collagen-binding polypeptides (CBPs) were detected in the heated and unheated preparations from both Treponema denticola ATCC 33520 and T. socranskii subsp. buccale ATCC 35534. Few CBPs, however, were detected in the heated and unheated preparations from a recently characterized isolate, T. medium strain G7201. Immunoelectron microscopy using rabbit antisera against the CBPs from the unheated preparations demonstrated that four CBPs, a 27 kDa type V-CBP of T. denticola ATCC 33520, a 95 kDa type IV-CBP and a 110 kDa type I-CBP of T. socranskii subsp. buccale ATCC 35534, and a 95 kDa type IV-CBP of T. medium strain G7201, were located on the outer envelopes of the individual cells. The adherence of T. denticola to the collagen-coated surfaces was significantly greater than that of T. medium, suggesting that the CBPs on the oral spirochetal cells play an important role in their adherence to collagen-rich connective tissues of the host.  相似文献   

2.
The polypeptides of seven strains of human treponemes were investigated by immunoblot analysis for their binding to the human placental collagens and laminin. Of the treponemal polypeptides, eleven polypeptides, 45-kDa, 49-kDa, and 62-kDa polypeptides from T. pallidum ATCC 27087, a 48-kDa polypeptide from T. phagedenis biotype Reiter, 51-kDa and 53-kDa polypeptides from T. vincentii ATCC 35580, 30-kDa, 53-kDa and 63-kDa polypeptides from T. socranskii subsp. buccale ATCC 35534, a 52-kDa polypeptide from T. denticola ATCC 35405, and a 53-kDa polypeptide from T. denticola ATCC 33520 possessed an ability to bind to the laminin, type I, III, IV, or V collagen. An intermediate-sized human oral isolate strain G7201 did not possess any laminin- or collagen-binding polypeptides. Immunoelectron microscopy using intact treponemal cells with a single collagen-binding polypeptide and the corresponding antisera demonstrated that the 51-kDa and 53-kDa polypeptides from T. vincentii, the 53-kDa polypeptide from T. socranskii subsp. buccale ATCC 35534 and the 52-kDa polypeptide from T. denticola ATCC 35405, were outer envelope proteins.  相似文献   

3.
Major polypeptides from a human oral spirochete Treponema denticola ATCC 33520 were examined to demonstrate their ability to bind to human plasma fibronectin by immunoblot analysis. Of three main polypeptides separated on sodium dodecyl sulfate polyacrylamide gels 53,000-daltons (53-kDa) and 72-kDa surface antigenic proteins and a 38-kDa axial flagellar protein showed the ability to bind to fibronectin, suggesting that fibronectin on host cells can mediate cytoadherence of T. denticola by its binding to the surface proteins or the exposed 38-kDa axial flageller protein.  相似文献   

4.
Lactoferrin-binding or -associated proteins were identified in Treponema pallidum subspecies pallidum and Treponema denticola by affinity column chromatography using human lactoferrin and detergent-solubilized, radiolabelled spirochaetes. Two discrete polypeptides of T. pallidum with masses of 45 and 40kDa and a broad band from 29-34 kDa exhibited association with human apo- and partially ferrated lactoferrin. T. denticola produced two proteins that associated with a lactoferrin affinity matrix (50 and 35 kDa). T. pallidum and T. denticola did not associate with soluble, human transferrin in parallel experiments. Soluble human lactoferrin competed with all lactoferrin-associated proteins from T. pallidum and T. denticola in competitive-binding assays. However, the T. denticola proteins dissociated from a lacto-ferrin-affinity matrix in the presence of differing concentrations of unlabelled, soluble lactoferrin competitor. Treatment with phospholipase D altered migration of the diffuse 29-34 kDa band of T. pallidum suggesting that the polypeptide was lipid-modified. Each of the lactoferrin-binding proteins from T. pallidum and T. denticola reacted with pooled rabbit syphilitic antisera. The lactoferrin-binding proteins of T. pallidum reacted with human sera from patients at all stages of syphilis. In addition, a monoclonal antibody generated against the 45 kDa polypeptide of T. pallidum crossreacted with the 29–34 kDa protein.  相似文献   

5.
The motility and chemotaxis of human oral spirochetes Treponema denticola ATCC 35404, T. medium ATCC 700293, and T. vincentii ATCC 35580 were examined by a capillary assay method. Of five sera three human oral treponemes were dominantly chemoattractant to the rabbit serum. The checkerboard analysis of chemotaxis toward rabbit serum clearly showed that the motile T. denticola cells swam toward the culture media containing higher concentrations of the rabbit serum. T. denticola chemotaxis to the rabbit serum was clearly reduced by heating serum, and rabbit albumin contributed by 60 to 70% to its chemotaxis to the rabbit serum. Western blotting analysis demonstrated that these treponemes possessed rabbit albumin-binding polypeptides with approximate molecular sizes of 65 kDa and 70 kDa. Immunoelectron microscopy demonstrated that a 65 kDa rabbit albumin-binding polypeptide was located on the outer envelopes, suggesting that the rabbit albumin-binding polypeptide is responsible for chemotaxis toward rabbit serum.  相似文献   

6.
This study examined the distribution of the major outer sheath proteins (MOSP) in several Treponema denticola strains and reports the isolation of a 64-kDa protein from the outer sheath of human clinical isolate T. denticola GM-1. The outer sheath was isolated by freeze-thaw procedures, and the distribution of outer sheath proteins was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). T. denticola GM-1, MS25, SR-5, and three low-passage clinical isolates possessed an MOSP with a relative molecular mass of 60 to 64 kDa. This MOSP was absent in T. denticola ATCC 35404 (TD-4) and clinical isolate SR-4. The latter possessed an MOSP of 58 kDa. 125I labeling revealed both MOSP to be dissociated forms of higher-molecular-mass oligomeric units between 116 and 162 kDa. Two-dimensional SDS-PAGE confirmed the modifiability of these MOSP. Isoelectric focusing of the 64-kDa MOSP indicated a pI of 6.7. Immunoblots with antiserum to GM-1 whole cells revealed the 64-kDa protein to be immunogenic and not cross-reactive with the MOSP of TD-4 or SR-4, and monospecific antibody to the 64-kDa protein recognized common epitopes on the high-molecular-weight oligomeric protein. These antibodies did not react with any component of TD-4 whole cells in immunoblots or in immunogold electron microscopy. Fab fragments inhibited the adherence of T. denticola GM-1 to human gingival fibroblasts by 78% (1:1,600; 0.72 micrograms of protein per ml), while TD-4 adherence was not inhibited. Amino acid analysis revealed a slightly acidic protein, devoid of cysteine, with 36% hydrophobic residues. Cyanogen bromide fragmentation of the 64-kDa protein revealed that a 42-kDa fragment contained a T-L-D-L-A-L-D segment which was 100% homologous with an integrin alpha subunit of a human leukocyte adhesion glycoprotein p 150,95.  相似文献   

7.
The outer membrane and surface exposed proteins of four strains of the gastric Campylobacter-like organism Campylobacter pyloridis were identified by SDS-PAGE of Sarkosyl-insoluble membranous material and 125I-surface-labelled whole bacteria. Although constant outer membrane proteins (molecular mass 61, 54 and 31 kDa) were observed in these strains, several variable 125I-labelled surface proteins were detected. C. pyloridis does not appear to express a single surface-exposed major outer membrane protein like that of C. jejuni and C. coli. Putative flagella proteins were identified from isolated flagella and acid-extractable surface material and by immunoblotting with anti-flagella antibodies. Several major protein antigens were observed by immunoblotting with anti-C. pyloridis antisera. At least two of these antigens cross-reacted with anti-C. jejuni antiserum. This cross-reaction appears to be caused primarily by flagellar antigens. However, one major protein antigen (61 kDa) was not cross-reactive with C. jejuni and may, therefore, be useful in serological tests for the specific diagnosis of C. pyloridis infections.  相似文献   

8.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

9.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

10.
Abstract The antigenic properties of the surface layer (S-layer) proteins of various Campylobacter rectus strains including 24 clinical isolates and the type strain ATCC 33238 were examined. S-layer proteins were extracted from whole cells by acid treatment according to the method of McCoy et al. (Infect. Immun. 11, 517–525, 1975). The acid extracts from 23 of the isolates and ATCC 33238 contained two major proteins with molecular masses of 130 kDa and 150 kDa, both of which were identified as subunits of the S-layer after comparison with the protein profiles of acid-treated (S-layer-deficient) cells. An S-layer protein from one isolate (CI-808) demonstrated a different molecular mass (160 kDa). Both the 150-kDa proteins of ATCC 33238 and isolate CI-306 and the 160-kDa protein of CI-808 were purified by ion-exchange chromatography in the presence of urea. In Ouchterlony immunodiffusion experiments with these purified proteins and rabbit antiserum raised to each purified protein, both common and strain-specific antigenic determinants were identified in the C. rectus S-layer proteins.  相似文献   

11.
The Mycoplasma pneumoniae FH strain routinely used in our laboratory for over 25 years as antigen in serological tests, 2 reference M. pneumoniae strains from ATCC (29342 and M129) and 3 isolates of M. pneumoniae obtained in 1995 from pneumonia patients were compared by SDS-PAGE, complement fixation test (CFT) and by Western-immunoblotting against human and rabbit serum samples with high level of mycoplasmal antibodies. On SDS-PAGE all M. pneumoniae strains showed the same number of 23 polypeptides on the gel with identical molecular weights. The same strains on immunoblotting against human and rabbit serum samples showed six bands: 170, 89, 75, 55, 38 and 33 kDa with the strongest antibody staining in 170-(P1 protein) and 89-kDa bands. Because of its known antigenic relationships Mycoplasma genitalium was used for comparison. The pattern of M. genitalium proteins on SDS-PAGE was similar to pattern of M. pneumoniae but distinguishable. On immunoblotting six proteins of M. genitalium (135, 127, 110, 95, 75 and 45 kDa) reacted with human and rabbits immunoglobulins for M. pneumoniae antigens. Furthermore in complement fixation test both antigens, prepared from M. pneumoniae and M. genitalium, reacted as well with human and rabbit immunoglobulins for M. pneumoniae and with rabbit immunoglobulins for M. genitalium. These cross-reactions observed in serological techniques could give false positive results in routine diagnosis of M. pneumoniae infections. In such situations showing on immunoblott of presence in tested serum sample of antibodies to 170- and 89 kDa proteins could confirm M. pneumoniae infection.  相似文献   

12.
Efforts have been made to determine whether surface antigens could be used as biochemical markers to define strain differences in the parasitic ciliate Ichthyophthirius multifiliis. In previous studies, a wild-type isolate designated G1 was found to have surface proteins analogous to the immobilization antigens of Paramecium and Tetrahymena; rabbit antiserum against this strain immobilizes homologous cells in vitro. It has now been shown for two additional Ichthyophthirius isolates (designated G1.1 and G2) that immobilization antigens are both present and serologically distinct. Proteins of similar size, which cross-react in Western blots with rabbit antisera against immobilization antigens of the G1 strain, are nevertheless found in the G1.1 and G2 isolates. As shown by Southern blotting analysis, the G1.1 and G2 strains also contain genomic DNA sequences which hybridize with an immobilization antigen cDNA from G1 when probed under conditions of reduced stringency. The serotypic differences in immobilization between I. multifiliis isolates appear to be stable over time and provide a means of discriminating strains. In addition to providing a basis for comparative studies, the work described here has implications for the development of vaccines against this important fish parasite.  相似文献   

13.
Characterization of common cell surface-bound antigens inCandida albicans strains, particularly those expressed in the walls of mycelial cells might be useful in the diagnosis of systemic candidiasis. Hence, antigenic similarities among wall proteins and mannoproteins fromC. albicans clinical serotype A and B isolates, were studied using polyclonal (mPAbs) and monoclonal (MAb 4C12) antibodies raised against wall antigens from the mycelial form of a commonC. albicans serotype A laboratory strain (ATCC 26555). Zymolyase digestion of walls isolated from cells of the different strains studied grown at 37°C (germination conditions), released, in all cases, numerous protein and mannoprotein components larger than 100 kDa, along with a 33–34 kDa species. The pattern of major antigens exhibiting reactivity towards the mPAbs preparation was basically similar for all the serotype A and B isolates, though minor strain-specific bands were also observed. The immunodeterminant recognized by MAb 4C12 was found to be absent or present in very low amounts inC. albicans isolates other than the ATCC 26555 strain, yet high molecular weight species similar in size (e.g., 260 kDa) to the wall antigen against which MAb 4C12 was raised, were observed, particularly in wall digests from serotype A strains. Cell surface hydrophobicity, an apparently important virulence factor inC. albicans, of the cell population of each serotype B strain was lower than that of the corresponding serotype A counterparts, which is possibly due to the fact that the former strains exhibited a reduced ability to form mycelial filaments under the experimental conditions used.Abbreviations CSH cell surface hydrophobicity - IIF indirect immunofluorescence  相似文献   

14.
Spore coat proteins of several strains ofClostridium perfringens were analyzed by immunoblotting with antisera against two major spore coat proteins, one [34-kilodalton (kDa)] from an enterotoxin-positive and one (19-kDa) from an enterotoxin-negative (ent) strain of this organism. The results indicated that spore coat proteins from many strains ofC. perfringens were immunologically related regardless of their ability to produce enterotoxin, but were not immunologically related to enterotoxin. The kinetics of synthesis and deposition of two major spore coat proteins differed depending upon the strain. Coat protein synthesis was sporulationspecific, since coat protein was not detected in vegetative cell extracts. There was no similarity between the amino acid composition of either coat protein and enterotoxin. These results suggest that, contrary to previous reports (W.R. Frieben and C.L. Duncan, Eur J Biochem 39:393–410, 1973), enterotoxin synthesis is not closely related to spore coat protein synthesis in this organism.  相似文献   

15.
Thirty-four human sera containing parietal cell autoantibodies (PCA) specifically immunoprecipitated two antigens, with apparent molecular masses of 60-90 kDa and 100-120 kDa under nonreducing conditions and 60-90 kDa and 120-150 kDa under reducing conditions, from porcine gastric membrane extracts. A third antigen of 92 kDa was only observed in immunoprecipitates analyzed under reducing conditions. By immunoblotting, 24 of the 34 PCA-positive sera reacted with only the 60-90-kDa antigen, three reacted with a broad 60-120-kDa smear, one reacted only with a 92-kDa antigen and six did not react. Reactivity with the 60-90-kDa antigen was observed with gastric membranes from dog, pig, rat, and rabbit. Twenty PCA-negative sera did not react with these components by immunoprecipitation or immunoblotting. PCA reactivity with the 60-90-kDa antigen was abolished when the gastric membranes were (a) digested with Pronase, (b) reduced with 100 mM dithiothreitol, (c) treated with sodium periodate, or (d) digested with N-glycanase. The 60-90-kDa and 100-120-kDa components were insensitive to neuraminidase treatment. N-glycanase digestion of 125I-labeled antigens purified by immunoprecipitation and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis collapsed the 60-90-kDa antigen to a sharp 34-kDa band; the 100-120-kDa component was unaffected. These observations suggest that (i) parietal cell antigens comprise three components of 60-90, 92, and 100-120 kDa; (ii) the epitopes differ in conformational sensitivity; (iii) the 60-90-kDa antigen is a conserved molecule comprising a 34-kDa core protein extensively glycosylated with N-linked oligosaccharides; (iv) sialic acid residues are not present in the 60-90- and 100-120-kDa molecules, and (v) the carbohydrate and protein moieties of the 60-90-kDa molecule are required for antibody binding.  相似文献   

16.
【目的】通过对弧菌外膜蛋白Omp U的克隆、表达以及免疫学特性分析,明确外膜蛋白Omp U是否为弧菌的共同抗原,并具有免疫交叉反应性和交叉保护性。【方法】对弧菌外膜蛋白omp U基因进行克隆和生物信息学分析。分别制备副溶血弧菌、溶藻弧菌、创伤弧菌、拟态弧菌和霍乱弧菌的Omp U重组蛋白抗血清,对Omp U的免疫交叉反应特性以及抗原表位定位情况进行比较分析。以霍乱弧菌的Omp U重组蛋白免疫小鼠后,再以多种弧菌进行攻毒,分析其交叉免疫保护作用。【结果】外膜蛋白Omp U在弧菌种内和种间相似性分别为73.0%–100%和58.6%–89.0%,并至少存在9个保守的B细胞抗原表位。Omp U重组蛋白抗血清在弧菌种内和种间均产生显著的免疫交叉反应,识别弧菌中分子量35–40 k Da的同源蛋白。副溶血弧菌ATCC17802、创伤弧菌ATCC27562和拟态弧菌ATCC33653来源的Omp U重组蛋白抗体能识别供试菌株,提示这些菌株的Omp U抗原表位定位于细胞表面。Omp U重组蛋白对免疫后的小鼠具有交叉免疫保护作用,攻毒实验后小鼠相对存活率(RPS)为43.0%–100%。【结论】上述结果表明,外膜蛋白Omp U是弧菌中一种保守的共同抗原,具有免疫交叉保护性,可以作为弧菌广谱疫苗的候选抗原。  相似文献   

17.
Baylisascaris procyonis larval excretory-secretory (ES) antigens consisted of complex glycoproteins ranging from 10 kDa to over 200 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and lectin binding. Five monoclonal antibodies (Bapr1-Bapr5) produced against B. procyonis ES antigens were assayed by western blotting with larval ES antigens from B. procyonis, Baylisascaris melis, Baylisascaris transfuga, Ascaris suum, and Toxocara canis. Bapr1 and Bapr2 recognized periodate-sensitive epitopes on 14-kDa ES components of B. procyonis, B. melis, and B. transfuga, whereas Bapr4 and Bapr5 recognized periodate-resistant epitopes present on 55-kDa ES components of B. procyonis and B. melis. Bapr3 primarily recognized periodate-resistant epitopes on 33-45-kDa components of B. procyonis and B. melis ES. Heterologous rabbit antisera cross-reacted with many B. procyonis ES antigens on western blots, but recognition of the 33-45-kDa components was genus-specific. Normal human sera and T. canis-positive human sera also cross-reacted with many B. procyonis ES antigens, including those of 33-45 kDa. However, periodate oxidation markedly decreased cross-reactions and allowed for differential immunodiagnosis of B. procyonis versus T. canis. These studies demonstrated that antibody recognition of carbohydrate epitopes on ES components is an important cause of cross-reactions in antibody detection assays. Recognition of periodate-resistant (protein) epitopes on the 33-45-kDa B. procyonis ES components appears to be useful for genus-specific immunodiagnosis of larva migrans caused by Baylisascaris spp.  相似文献   

18.
Antigenic and structural analysis of Treponema denticola   总被引:10,自引:0,他引:10  
Polypeptide and Western immunoblot profiles of subcellular fractions of Treponema denticola ATCC 33520 have been determined by SDS-PAGE of Triton X-100-soluble and -insoluble fractions, a lipopolysaccharide-enriched fraction and purified flagella. Major Triton X-100-soluble polypeptides of 72, 68, 54 and 52 kDa were detected. The 54 kDa polypeptide appeared to be a breakdown product of a larger, heat-modifiable polypeptide. Based on the results of SDS-PAGE analysis and immunoblotting of proteinase K digests of T. denticola, a 'rough' lipopolysaccharide appeared to be present. Electron microscopy has been used to monitor the effect of detergent treatment on the morphology of the organism and to examine the detailed structure of the flagella. Treatment with Triton removed the T. denticola outer membrane, resulting in exposure of the flagella. The flagella were shown to have a complex sheath and core structure and polypeptide composition characteristic of that observed for other treponemes. Polypeptides of 38, 35, 32 and 28 kDa were present in purified flagella preparations. Immunoelectron microscopy, iodine-labelling and Western blotting were used to demonstrate the exposure of antigens on the T. denticola surface. Surface iodination located polypeptides of 72, 68 and 54 kDa. Antiserum raised against whole cells of T. denticola recognized these polypeptides and an additional polypeptide of 52 kDa. These data provide a basis for future detailed molecular analysis of the ultrastructure and antigenicity of T. denticola.  相似文献   

19.
Proteins of Lactococcus lactis ssp. lactis and L. lactis ssp. cremoris bacteriophages were studied using antibody inhibition assay and immunoblotting. Antisera were prepared against four representative L. lactis ssp. lactis and L. lactis ssp. cremoris phages (D59-1, F4-1, G72-1, and I37-1), which were selected from 17 isolates, derived from commercial cheese wheys. The reactivities of the four antisera with 13 other phage isolates were tested. Among these isolates, two phage groups having distinct serological properties were found. Group I reacted with the antisera against phages D59-1/F4-1 and Group II reacted with the antisera against phages G72-1/I37-1. Strongly lytic phages, capable of lysing phage-resistant host strains, were found to share protein similarities with the phage protein group I, and phages isolated from phage-sensitive host strains belonged to the phage protein group II. Furthermore, group I was composed of all prolate and some isometric phages, whereas group II was composed solely of the isometric phages. Thus, the two serologically distinct phage groups were not correlated with the two morphological groups, prolate and isometric. Proteins of the four phages were further characterized by immunoblotting and silver staining. A 22.5-kDa antigenic polypeptide of phage I37-1, and three polypeptides of 65, 37, 21 kDa in phage F4-1 were responsible for the cross-reactivities in group II and group I, respectively. Correspondence to: R. A. Ledford  相似文献   

20.
The recent development of a reliable murine T lymphocyte proliferation assay has facilitated the study of T lymphocyte function in vitro. In this paper, the effect of anti-histocompatibility antisera on the proliferative response was investigated. The continuous presence of anti-Ia antisera in the cultures was found to inhibit the responses to the antigens poly (Glu58 Lys38 Tyr4) [GLT], poly (Tyr, Glu) ploy D,L Ala-poly Lys [(T,G)-A--L], poly (Phe, Glu)-poly D,L Ala-poly Lys [(phi, G)-A--L], lactate dehydrogenase H4, staphylococcal nuclease, and the IgA myeloma protein, TEPC 15. The T lymphocyte proliferative responses to all of these antigens have previously been shown to be under the genetic control of major histocompatibility-linked immune response genes. The anti-Ia antisera were also capable of inhibiting proliferative responses to antigens such as PPD, to which all strains respond. In contrast, antisera directed solely against H-2K or H-2D antigens did not give significant inhibition. Anti-Ia antisera capable of reacting with antigens coded for by genetically defined subregions of the I locus were capable of completely inhibiting the proliferative response. In the two cases studied, GLT and (T,G)-A--L, an Ir gene controlling the T lymphocyte proliferative response to the antigen had been previously mapped to the same subregion as that which coded for the Ia antigens recognized by the blocking antisera. Finally, in F1 hybrids between responder and nonresponder strains, the anti-Ia antisera showed haplotype-specific inhibition. That is, anti-Ia antisera directed against the responder haplotype could completely block the antigen response controlled by Ir genes of that haplotype; anti-Ia antisera directed against Ia antigens of the nonresponder haplotype gave only partial or no inhibition. Since this selective inhibition was reciprocal depending on which antigen was used, it suggested that the mechanism of anti-Ia antisera inhibition was not cell killing or a nonspecific turning off of the cell but rather a blockade of antigen stimulation at the cell surface. Furthermore, the selective inhibition demonstrates a phenotypic linkage between Ir gene products and Ia antigens at the cell surface. These results, coupled with the known genetic linkage of Ir genes and the genes coding for Ia antigens, suggest that Ia antigens are determinants on Ir gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号