首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MPM-2 antibody, which recognizes a mitosis-specific phosphorylated epitope, has been used to study cell-cycle-related proteins in partially synchronized cell suspension cultures and root meristem cells. Immunofluorescence revealed that the epitope recognized by MPM-2 is located in the nucleus in interphase cells. In mitotic cells, MPM-2 labels the prophase nucleus, the spindle and some cytoplasmic components. The relative amount of the epitope changes significantly during the cell cycle. Labelling is lowest in G1 and S-phase cells and increases 2–3-fold during G2. Prophase and metaphase show four to five times the labelling of G1 cells. Labelling decreases rapidly after metaphase and is at a very low level by telophase. One- (1-D) and two-dimensional (2-D) immunoblots showed that MPM-2 labels a family of phosphorylated proteins. The labelling shows significant cell cycle dependence. Subfractionation shows at least one of these proteins is a component of the detergent-insoluble cytoskeleton cell fraction. This component is resolved on 2-D immunoblots to two to three spots of slightly different isoelectric point, possibly charge isomers, at a relative molecular mass of approximately 65 kDa. The same spots are labelled by IFA, an antibody against intermediate filament proteins. Another three of the spots at lower relative molecular mass are labelled on 2-D immunoblots of the nuclear matrix fraction.  相似文献   

2.
Flow cytometric multiparameter analysis of two proliferation-associated nuclear antigens (proliferating cell nuclear antigen (PCNA)/cyclin and Ki-67) was performed on seven human hematopoietic cell lines. PCNA/cyclin, an S phase-related antigen, was detected using an autoantibody and a fluorescein isothiocyanate-labeled anti-human antibody. The Ki-67 antigen, which in cycling cells is expressed with increasing levels during the S phase with a maximum in the M phase, was detected using a monoclonal antibody and a phycoerythrin-conjugated anti-mouse antibody. In some experiments the PCNA/Ki-67 staining was combined with a DNA stain, 7-amino actinomycin D, and simultaneous detection of the three stains was performed by a single laser flow cytometer. Using this technique four distinct cell populations, representing G1, S, G2, and M, respectively, could be demonstrated in cycling cells on the basis of their PCNA/cyclin and Ki-67 levels. The cell cycle phase specificity could be verified using metaphase (vinblastine, colcemide) and G2 phase (mitoxantrone) blocking agents, as well as by stainings with a mitosis-specific antibody (MPM-2). Also, G0 cells could be discriminated from G1 cells in analysis of a mixture of resting peripheral mononuclear blood cells and a proliferating cell line. This technique can be valuable in detailed cell cycle analysis, since all cell cycle phases can be visualized and calculated using a simple double staining procedure.  相似文献   

3.
We examined the immunogold staining of microtubules and microtubule organizing centers using an improved silver-enhancement reagent for small (1-1.4 nm) gold-conjugated secondary antibodies. First, the staining properties of different commercial preparations of gold-labeled antibodies were compared for sample penetration, label uniformity, and labeling density, and Nanogold 1.4-nm gold-conjugated F(ab') was found to be superior to the other probes examined. However, in samples examined for the localization of alpha- and beta-tubulin, gold staining did not extend through the pericentriolar material nor were the centrioles labeled. This apparent lack of centrosomal staining was not due to problems associated with penetration of the antibody probes, since staining adjacent to and within the centriolar cylinder was observed when phosphoprotein antigens recognized by the MPM-2 antibody were localized. The MPM-2 antibodies also localized to mitotic kinetochores, kinetochore fibers, and midbodies, in addition to mitotic centrosomes. The level of MPM-2 staining of the centrosome varied through the cell cycle. At interphase, this staining was restricted within the centriolar cylinder, whereas in mitotic cells extensive staining throughout the pericentriolar material was also observed. These results established the close relationship of MPM-2-reactive phosphoproteins with the centrosome, and suggest that this technique may be useful for ultrastructural localization of other cytoskeletal proteins.  相似文献   

4.
Threonine phosphorylation is associated with mitosis in HeLa cells   总被引:3,自引:0,他引:3  
J Y Zhao  J Kuang  R C Adlakha  P N Rao 《FEBS letters》1989,249(2):389-395
Phosphorylation and dephosphorylation of proteins play an important role in the regulation of mitosis and meiosis. In our previous studies we have described mitosis-specific monoclonal antibody MPM-2 that recognizes a family of phosphopeptides in mitotic cells but not in interphase cells. These peptides are synthesized in S phase but modified by phosphorylation during G2/mitosis transition. The epitope for the MPM-2 is a phosphorylated site. In this study, we attempted to determine which amino acids are phosphorylated during the G2-mitosis (M) transition. We raised a polyclonal antibody against one of the antigens recognized by MPM-2, i.e. a protein of 55 kDa, that is present in interphase cells but modified by phosphorylation during mitosis. This antibody recognizes the p55 protein in both interphase and mitosis while it is recognized by the monoclonal antibody MPM-2 only in mitotic cells. Phosphoamino acid analysis of protein p55 from 32P-labeled S-phase and M-phase HeLa cell extracts after immunoprecipitation with anti-p55 antibodies revealed that threonine was extensively phosphorylated in p55 during G2-M but not in S phase, whereas serine was phosphorylated during both S and M phases. Tyrosine was not phosphorylated. Identical results were obtained when antigens recognized by MPM-2 were subjected to similar analysis. As cells completed mitosis and entered G1 phase phosphothreonine was completely dephosphorylated whereas phosphoserine was not. These results suggest that phosphorylation of threonine might be specific to some of the mitosis-related events.  相似文献   

5.
Pavla Binarova  P. Rennie  L. Fowke 《Protoplasma》1994,180(3-4):106-117
Summary The localization in higher plant cells of phosphorylated proteins recognized by the monoclonal antibody MPM-2 was investigated, with particular attention to putative microtubule organizing centres (MTOCs). Immunofluorescence and immunogold electron microscopy showed that MPM-2 did not localize with most putative MTOCs in cells and protoplasts of the gymnospermPicea glauca and in cells of the angiospermVicia faba. The distribution of phosphoproteins detected by MPM-2 was similar during mitosis in both species. At late interphase and early prophase MPM-2 preferentially labelled nucleoli and the region around the condensing chromosomes but not the cytoplasm. General labelling of the cytoplasm followed dissolution of the nuclear envelope and by prometaphase centromeres stained strongly. At metaphase and very early anaphase kinetochores stained strongly by immunofluorescence but only weakly using immunogold; spindle microtubules (MTs) showed little staining. Kinetochore staining disappeared during anaphase and by telophase centromeres and loose regions of chromatin in reforming nuclei were labelled. Treatment with the anti-microtubular drug amiprophosmethyl (APM) showed that the phosphorylation/dephosphorylation cycle detected by MPM-2 proceeded independently of the mitotic spindle. Staining of centromeres/kinetochores with MPM-2 suggests that phosphorylation and dephosphorylation of this region of mitotic chromosomes may be involved in chromosome organization, chromatid separation and MT nucleation and/or attachment.Abbreviations APM amiprophos-methyl - DAPI 4,6-diamidino-2-phenylindole - EGTA ethylene glycol-bis(-aminoethyl ether) - FITC fluorescein isothiocyanate - MT microtubule - MTOC microtubule organizing centre - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PBSB phosphate buffered saline with bovine serum albumin - PIPES piperazine-N,N-bis (2-ethanesulfonic acid) - PPB preprophase band - SPB spindle pole body - TRITC tetramethylrhodamine isothiocyanate  相似文献   

6.
MPM-2 is a monoclonal antibody that interacts with mitosis-specific phosphorylated proteins in many different organisms. Immunocytochemistry of tissue culture cells has shown that MPM-2 stains centrosomes, chromosomes, kinetochores, and spindles. In this paper, we demonstrate that MPM-2 staining colocalizes with the spindle pole body (SPB) of Aspergillus nidulans and that SPB staining varies during the mitotic cycle. In an unsynchronized population, about one-fourth to one-third of the cells stain with MPM-2 at the spindle plaques or SPBs. Nuclei in mitosis have two SPBs localized at the ends of the spindle, both of which stain with MPM-2. To determine when MPM-2 staining appears, we have examined the effects of temperature-sensitive cell-cycle mutations that block nuclear division in S or G2. Only a very small fraction of cells blocked in S-phase stain with MPM-2. In contrast, a large fraction of cells blocked in G2 stain brightly at the SPB. These data suggest that MPM-2 reactivity of SPBs appears in G2. Moreover, the fact that cells blocked in G2 showed MPM-2 staining but no spindles suggests that reactivity of SPBs occurs prior to mitosis but is not sufficient to trigger spindle formation. When G2-blocked cells were downshifted to permissive temperature, they generated a mitotic spindle with an SPB at each end. Both SPBs stained with MPM-2 in all of the mitotic cells.  相似文献   

7.
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication.  相似文献   

8.
Silver staining (Ag-I) was used to investigate changes in the nucleolar structure of PHA-stimulated human lymphocytes through the phases of the cell cycle, G1, S and G2. Ag-I patterns and cell cycle phases of individual cells were assessed by sequential silver staining, Feulgen staining, DNA microdensitometry and 3H-thymidine autoradiography. The morphology and number of Ag-I nucleoli in a particular cell depended upon the phase of the cell cycle reached and on the number of generations the cell had passed through in culture. Resting, unstimulated cells usually had one small silver positive nucleolus. During blast transformation, the silver stained nucleoli increased in number and size, and then fused to form one very large, rounded or irregular-shaped nucleolus which was present through all cell cycle phases of the first reproductive cycle. Many lymphocytes developed a band-shaped nucleolus during their first S phase in culture. Lymphocytes at all cell cycle stages of the second and third generations after PHA-stimulation had multiple nucleoli whose combined areas approximated that of the single large nucleolus observed in first generation cells.  相似文献   

9.
Fibroblast growth factor-2 (FGF-2) promotes cardiac myocyte proliferation and has been detected in extracellular as well as cytoplasmic and nuclear compartments. As a first step in examining the participation of intracellular FGF-2 in cardiac myocyte cell cycle we have investigated its localization in proliferative chicken cells during interphase and the various stages of mitosis in culture. We have used a previously characterized and affinity-purified anti-FGF-2 antibody preparation which recognizes the 19-22 kDa variants of chick FGF-2. By immunofluorescence, bright, punctate anti-FGF-2 labelling was observed in 26% of interphase nuclei from myocytes derived from 5 day embryonic heart ventricles; these nuclei were positive for anti-bromodeoxyuridine staining indicating that they are at the S- or G2 phase of the cell cycle. In prophase and metaphase, bright anti-FGF-2 staining was detected in apparent association with chromosomes. During anaphase, however, anti-FGF-2 staining dissociated from chromosomal locations distinctly remaining in strand-like structures in the area of ensuing cleavage furrow formation. In late telophase and cytokinesis, strong staining persisted in the area of the midbody and reappeared in a small fraction of newly formed daughter nuclei. Absorption of the antibody preparation with immobilized FGF-2 eliminated all staining. This dynamic pattern of anti-FGF-2 staining suggests that chick FGF-2 or immunologically related protein(s) not only increase in DNA-synthesizing nuclei but they may play a role in subsequent stages of mitosis and cytokinesis.  相似文献   

10.
Mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases implicated in the control of cell proliferation and differentiation. We have found that activated p42mapk is a target for the phosphoepitope antibody MPM-2, a monoclonal antibody that recognizes a cell cycle-regulated phosphoepitope. We have determined that the MPM-2 antibody recognizes the regulatory region of p42mapk. Binding of the MPM-2 antibody to active p42mapk in vitro results in a decrease in p42mapk enzymatic activity. The MPM-2 phosphoepitope can be generated in vitro on bacterially expressed p42mapk by phosphorylation with either isoform of MAP kinase kinase (MKK), MKK1, or MKK2. Analysis of p42mapk proteins mutated in their regulatory sites shows that phosphorylated Thr-183 is essential for the binding of the MPM-2 antibody. MPM-2 binding to Thr-183 is affected by the amino acid present in the other regulatory site, Tyr-185. Substitution of Tyr-185 with phenylalanine results in strong binding of the MPM-2 antibody, whereas substitution with glutamic acid substantially diminishes MPM-2 antibody binding. The MPM-2 phosphoepitope antibody recognizes an amino acid domain incorporating the regulatory phosphothreonine on activated p42mapk in eggs during meiosis and in mammalian cultured cells during the G0 to G1 transition.  相似文献   

11.
The DNA-binding protein Ku (p70/p80) was originally discovered through the use of human autoimmune sera. In attempts to search out nucleolar proteins in relation to nucleolar dynamic changes, we developed monoclonal antibodies against nuclear proteins. One antibody, termed LL1, received particular attention since asynchronous cells exhibited tremendous differences in their nucleolar fluorescence intensities after immunostaining. The LL1 protein was proven to be the Ku subunit p80 (Ku80) by cDNA cloning and sequencing. Possible correlations between the heterogeneous distribution of Ku80 in nucleoli and the cell cycle were examined. HeLa cells were synchronized at M phase by arrest with nocodazole, or at the G1/S boundary by sequential treatments with thymidine and aphidicolin. These cells were then released by culturing in fresh medium to allow the cell cycle to progress synchronously. Immunofluorescent detection of Ku80 revealed that nucleoli of the cells at the G1/S boundary had very small amounts of Ku80, which was mainly present in the nucleoplasm. Ku80 was gradually accumulated in nucleoli during S phase and reached the maximum at late S or G2 phase. Immunoblotting experiments showed that cell extracts prepared from different phases of the cell cycle had virtually identical amounts of Ku80. These results suggest that Ku80 migrates from nucleoplasm to nucleoli in a cell cycle-dependent manner.  相似文献   

12.
Cytoplasmic microtubules of animal cells catastrophically depolymerize upon entry into mitosis but in higher plants there is a longer transition during which cortical microtubules form an increasingly narrow preprophase band, and the chromatin gradually condenses. Progression towards mitosis in onion root tip cells was analysed using a CCD camera and image processing to quantify fluorescence staining by the monoclonal antibody MPM-2, which recognizes mitotic phosphoproteins in a range of eukaryotic cells. MPM-2 fluorescence, which was predominantly nuclear, was categorized relative to the stage of the DNA cycle (using DAPI), and to the microtubule cycle (using anti-tubulin) in individual cells. Cells with the characteristic interphase cortical microtubule arrays had a bimodal distribution of DAPI fluorescence, indicating that some were in G1 (2C DNA) whilst the double value suggested the others to be in G2 (4C). There was no difference in MPM-2 fluorescence between 2C and 4C cells possessing the cortical array in which microtubules were evenly distributed. However, in 4C cells possessing a preprophase band MPM-2 values doubled; this relationship applied not only to tight PPBs but to early, broad PPBs in which the individual microtubules could still be distinguished. Since alkaline phosphatase abolished MPM-2 reactivity it is concluded that mitotic phosphoproteins do not necessarily begin to accumulate in G2 per se , but during that part of G2 when the preprophase band first becomes recognizable as a distinct entity.  相似文献   

13.
OBJECTIVE: To investigate, with laser scanning cytometry (LSC), proliferating cell nuclear antigen (PCNA) expression during the cell cycle in renal cell carcinoma. STUDY DESIGN: DNA ploidy and intracellular localization of PCNA in renal cell carcinoma were determined using LSC and immunohistochemistry. The subjects were nine patients who had received surgery for renal cell carcinoma. After DNA ploidy analysis, the glass slides were restained by immunohistochemistry of PCNA. LSC allowed direct observation of PCNA localization during the cell cycle because we could obtain immunohistochemical staining of PCNA as a function of cell cycle phase for individual cells. RESULTS: PCNA was not demonstrated in the nuclei of G0/G1 cells. PCNA expression increased from the S phase of the cell cycle. PCNA rapidly degraded at the end of the G2 phase. In the late G2 and M phase, PCNA was not detected in almost any nucleus. CONCLUSION: LSC allows morphologic observation of the intracellular distribution of PCNA during the cell cycle in renal cell carcinoma.  相似文献   

14.
The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal–regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells during mitosis using antibodies selective for active phosphorylated forms of these enzymes. In NIH 3T3 cells, both ERK and MKK are activated within the nucleus during early prophase; they localize to spindle poles between prophase and anaphase, and to the midbody during cytokinesis. During metaphase, active ERK is localized in the chromosome periphery, in contrast to active MKK, which shows clear chromosome exclusion. Prophase activation and spindle pole localization of active ERK and MKK are also observed in PtK1 cells. Discrete localization of active ERK at kinetochores is apparent by early prophase and during prometaphase with decreased staining on chromosomes aligned at the metaphase plate. The kinetochores of chromosomes displaced from the metaphase plate, or in microtubule-disrupted cells, still react strongly with the active ERK antibody. This pattern resembles that reported for the 3F3/2 monoclonal antibody, which recognizes a phosphoepitope that disappears with kinetochore attachment to the spindles, and has been implicated in the mitotic checkpoint for anaphase onset (Gorbsky and Ricketts, 1993. J. Cell Biol. 122:1311–1321). The 3F3/2 reactivity of kinetochores on isolated chromosomes decreases after dephosphorylation with protein phosphatase, and then increases after subsequent phosphorylation by purified active ERK or active MKK. These results suggest that the MAP kinase pathway has multiple functions during mitosis, helping to promote mitotic entry as well as targeting proteins that mediate mitotic progression in response to kinetochore attachment.  相似文献   

15.
To reveal the behavior of silver stainable material localized mainly in the nucleoli and nucleolar organizing regions (NORs), the somatic cells ofVicia faba were investigated by silver staining throughout the mitotic cell cycle. Nucleoli of interphase and early prophase nuclei were darkly stained. From late prophase to anaphase the secondary constrictions were discriminated as silver stained NORs and many silver grains appeared throughout the cytoplasm. At late prophase the NOR condensed at the same rate as the chromosome arm. Small spherical bodies and two new nucleoli appeared in telophase nuclei and at the same time the cytoplasmic grains disappeared. On the basis of the above observations on the silver stainable material during each mitotic phase, the behavior of silver stainable material is interpreted.  相似文献   

16.
A method for sequential estimation of nuclear DNA and silver staining of nucleoli in plant cells is described. Feulgen staining is done first and nuclear DNA estimated by absorption cytophotometry. Following this, the slides are stained with AgNO3. The method has been used to study the process of nucleolar fusion in garlic (Allium sativum L.) meristem root tip cells. It was found that during interphase nucleoli rarely fused, thus most fusion must have occurred before the G1 phase of the cell cycle.  相似文献   

17.
18.
19.
The role of BubR1 has been established mainly in mitosis as an essential mitotic checkpoint protein although it is expressed throughout the cell cycle. To explore a possible role of BubR1 in regulating the G2 phase of cell cycle, we have employed siRNA–mediated hBubR1 knockdown in HeLa cells. Here, we demonstrate that reducing BubR1 levels during the G2 phase causes accelerated mitotic entry. As expected, BubR1 depletion leads to degradation of cyclin B1 in the G2 phase. Intriguingly, cyclin B1 is prematurely targeted to centrosomes appearing at early G2 phase in BubR1-depleted cells despite its low levels. This is in contrast to control cells where cyclin B1 appears at the centrosomes in early prophase based on cell cycle-specific localization of CENP-F. Furthermore, cyclin B/Cdk1 kinase activity in early G2 is aberrantly high in BubR1-depleted cells. Together, our results indicate that hBubR1 depletion triggers premature centrosomal localization of cyclin B1 probably leading to premature mitotic entry. This study is the first to suggest a role of hBubR1 in controlling centrosome targeting of cyclin B1 and timing of mitotic entry.  相似文献   

20.
The formation of mitotic centrosomes is a complex process in which a number of cellular proteins translocate to mitotic poles and play a critical role in the organization of the mitotic apparatus. The 238-kDa nuclear mitotic apparatus protein NuMA is one of the important proteins that plays a significant role in this process. NuMA resides in the nucleus during interphase and becomes transiently associated with mitotic centrosomes after multiple steps of phosphorylations. The role of NuMA in the interphase nucleus is not well known but it is clear that NuMA responds to external signals (such as hormones) that induce cell division, or heat shock that induces apoptosis. In order to determine the function of NuMA it is important to study its localization. Here we report on nuclear organization of NuMA during the cell cycle in estrogen responsive MCF-7 breast cancer cells and in androgen responsive LNCaP prostate cancer cells using immunoelectron microscopy, and on correlation to MPM-2 monoclonal phosphoprotein antibody. These results show that NuMA is present in speckled and punctate form associated with distinct material corresponding to a speckled or punctate immunofluorescence appearance in the nucleus while MPM-2 is uniformly dispersed in the nucleus. At prophase NuMA disperses in the cytoplasm and associates with microtubules while MPM-2 is uniformly distributed in the cytoplasm. During metaphase or anaphase anti-NuMA labeling is associated with spindle fibers. During telophase NuMA relocates to electron-dense areas around chromatin and finally to the reconstituted nuclei. These results demonstrate NuMA organization in MCF-7 and LNCaP cells in the log phase of cell culture growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号