首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin filaments were identified in the epithelial cells of rat uterus following detergent extraction and decoration of microfilaments (MF) with myosin subfragment 1 (S1). MF connections with cytoplasmic organelles and the apical plasma membrane are also described. Transmission electron microscopy revealed that the regular microvilli of non-pregnant, oestrous animals contain several decorated MF with rootlets descending into a densely filamentous terminal web. Following mating, the actin cytoskeleton was examined on days 1, 3 and 6 of pregnancy. In this period, the irregular projections that replace MV assumed an underlying, dense network of decorated MF, whilst smoother surfaces displayed few cytoplasmic filaments. At the time of blastocyst implantation, a structured terminal web was no longer present. Structural details were revealed concerning the contents of large, bleb-like projections found on the apical surface.  相似文献   

2.
Ultrastructural changes in the plasma membrane of uterine epithelial cells in the pseudopregnant rat were examined to determine if these changes resemble those found during normal pregnancy and also to examine if the well-known membrane alterations of early pregnancy are intrinsic to uterine epithelial cells. Changes in the surface contours of uterine epithelial cells from the afternoon of day 6 to the morning of day 9 of pseudopregnancy were similar to those present after attachment in normal pregnancy although somewhat delayed. The presence of short, irregular microvilli was seen from as early as day 7 of pseudopregnancy, with regular microvilli returning to the epithelial surface by days 8-9 of pseudopregnancy but to a slightly lesser extent as compared to normal pregnancy. Furthermore, observations made on the afternoon of day 6 to the morning of day 7 of pseudopregnancy showed that the uterine lumen was closed down and that complete membrane flattening between opposing uterine epithelial cells was seen all along the uterus in the absence of a blastocyst. These observations establish that the "plasma membrane transformation" does not depend on blastocyst implantation.  相似文献   

3.
4.
Leukemia inhibitory factor plays a major role in the uterus and in its absence embryos fail to implant. Our knowledge of the targets for LIF and the consequences of its absence is still very incomplete. In this study, we have examined the ultrastructure of the potential implantation site in LIF-null MF1 female mice compared to that of wild type animals. We also compared expression of proteins associated with implantation in luminal epithelium and stroma. Luminal epithelial cells (LE) of null animals failed to develop apical pinopods, had increased glycocalyx, and retained a columnar shape during the peri-implantation period. Stromal cells of LIF-null animals showed no evidence of decidual giant cell formation even by day 6 of pregnancy. A number of proteins normally expressed in decidualizing stroma did not increase in abundance in the LIF-null animals including desmin, tenascin, Cox-2, bone morphogenetic protein (BMP)-2 and -7, and Hoxa-10. In wild type animals, the IL-6 family member Oncostatin M (OSM) was found to be transiently expressed in the luminal epithelium on late day 4 and then in the stroma at the attachment site on days 5-6 of pregnancy, with a similar but not identical pattern to that of Cox-2. In the LIF-null animals, no OSM protein was detected in either LE or stroma adjacent to the embryo, indicating that expression requires uterine LIF in addition to a blastocyst signal. Fucosylated epitopes: the H-type-1 antigen and those recognized by lectins from Ulex europaeus-1 and Tetragonolobus purpureus were enhanced on apical LE on day 4 of pregnancy. H-type-1 antigen remained higher on day 5, and was not reduced even by day 6 in contrast to wild type uterus. These data point to a profound disturbance of normal luminal epithelial and stromal differentiation during early pregnancy in LIF-nulls. On this background, we also obtained less than a Mendelian ratio of null offspring suggesting developmental failure.  相似文献   

5.
Focal adhesions play an important role in promoting embryo invasion; in particular, focal adhesions disassemble at the time of implantation in the rat, facilitating the detachment of the uterine luminal epithelium to allow the embryo to invade the endometrium. This study investigated focal adhesion protein, focal adhesion kinase (FAK) in the rat uterine luminal, and glandular epithelial cells to understand the dynamics of focal adhesions during early pregnancy. FAK undergoes extensive distributional change during early pregnancy, and surprisingly, FAK was not localized at the site of focal adhesions, instead being localized to the site of cell‐to‐cell contact and colocalizing with ZO‐1 on day 1 of pregnancy. At the time of implantation, FAK increases in the apical region of the uterine luminal epithelial cells which was regulated by progesterone. Using an in vitro co‐culture model of rat blastocysts attached to Ishikawa cells, FAK was present apically both in the rat blastocyst and the Ishikawa cells, suggesting a role in attachment andin mediating signal transduction between these two genetically different cell types. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
M Wide  B O Nilsson 《Teratology》1979,20(1):101-113
Implantation chambers, trophoblast and uterine luminal surfaces were examined on days 5 and 6 of pregnancy by electron microscopy in mice with implantation failure due to an intravenous injection of 75 ppm of lead chloride on day 4. Attachment of the trophoblast cells to the surface of the endometrium and closure of the uterine lumina had failed to occur. Uterine epithelial cells in implantation chambers and along the lumina were covered with abundant microvilli. This appearance is similar to that seen in mice in experimental delay of implantation before the oestrogen-induced attachment of the blastocyst has occurred. It may therefore be assumed that lead has in some way interfered with the activity of ovarian steroid hormones on the endometrium. No significant changes were observed in surface ultrastructure of the blastocysts from the lead-treated and control groups.  相似文献   

7.
Uterine epithelial cells transform into a receptive state to adhere to an implanting blastocyst. Part of this transformation includes the apical concentration of cell adhesion molecules at the time of implantation. This study, for the first time, investigates the expression of ICAM1 and fibrinogen‐γ (FGG) in uterine epithelial cells during normal pregnancy, pseudopregnancy and in hormone‐treated rats. An increase (P < 0.05) in ICAM1 was seen at the apical membrane of uterine epithelial cells at the time of implantation compared with day 1 of pregnancy. ICAM1 was also increased (P < 0.05) on day 6 of pseudopregnancy as well as in ovariectomized rats treated with progesterone plus oestrogen. These results show that ICAM1 up‐regulation at the time of implantation is under the control of progesterone, and is not dependent on cytokine release from the blastocyst or in semen. FGG dimerization increased (P < 0.05) on day 6 of pregnancy compared with day 1, and was not up‐regulated in day 6 pseudopregnant animals, suggesting this increase is dependent on a developing blastocyst. The presence of ICAM1 and FGG in the uterine epithelium at the time of implantation in the rat is similar to that seen in lymphocyte–endothelium adhesion, and we suggest a similar mechanism in embryo–uterine epithelium adhesion is utilized. Mol. Reprod. Dev. 78:318–327, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Ultrastructural and light microscopic cytochemical methods were used to study the distribution and changes in distribution of alkaline phospatase in the apical plasma membrane of rat uterine epithelial cells during different stages of early pregnancy up to the time of attachment of the blastocyst. Reaction product generated by alkaline phosphatase (AP) was located along the apical plasma membrane at each stage investigated. However, a very different organization of reaction product was observed depending on the time during early pregnancy with a continuous pattern appearing all along the microvilli on day 1. This pattern was subsequently converted into a clumped and highly ‘patchy’ appearance around the time of blastocyst attachment by day 6 of pregnancy. This change in pattern and distribution was only seen on the luminal epithelial cells with glandular epithelial cells and blood vessels displaying an unchanging distribution.  相似文献   

9.
The non-receptive uterine luminal epithelium forms an intact polarised epithelial barrier that is refractory to blastocyst invasion. During implantation, organised dismantling of this barrier leads to a receptive state promoting blastocyst attachment. Claudins are tight junction proteins that increase in the uterine epithelium at the time of implantation. Claudin 7 is a member of this family but demonstrates a basolateral localisation pattern that is distinct from other claudins. The present study investigated the localisation, abundance and hormonal regulation of claudin 7 to elucidate a role for the protein during implantation. The results showed that claudin 7 demonstrates a distinct basal and lateral localisation in the uterine luminal and glandular epithelium throughout early pregnancy. On day 1, claudin 7 is abundantly present in response to ovarian estrogen. At the time of implantation, claudin 7 decreases in abundance. This decrease is not dependent on blastocyst presence, as shown by results in pseudopregnant animals. We propose that claudin 7 mediates intercellular adhesions in the uterine epithelium and also may be responsible for stabilising adhesion proteins at the basolateral cell surface. Thus, claudin 7 may function under the maintenance of the uterine luminal epithelial barrier, in the non-receptive state preventing implantation from occurring.  相似文献   

10.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

11.
Uterine epithelial cells (UECs) undergo extensive morphological remodelling in preparation for an implanting blastocyst. This remodelling involves changes in the actin cytoskeleton and surface structures including microvilli. Ezrin and ezrin-radixin-moesin-binding protein-50-kDa (EBP50) link actin filaments to intra-membranous adhesion molecules and are important molecules in polarised epithelia. The current study is the first to describe the colocalisation and molecular association of ezrin and EBP50 in rat UECs by using immunofluorescence microscopy and immunoprecipitation techniques. These proteins have also been localised in relation to uterine epithelial cytoskeletal rearrangement during early pregnancy in the rat and to the effect of apical surface contact between opposing epithelial cells, blastocyst contact and contact with a silicon filament. Immunofluorescence microscopy has revealed that ezrin and EBP50 respond to contact between opposing epithelial cells and increase apically on day 6 of pregnancy. This apical distribution is also observed in UECs in contact with a silicon filament. Ezrin and EBP50 are however absent within the implantation chamber itself, seemingly mimicking the events that take place in leucocyte-endothelium binding. Thus, ezrin and EBP50 occur apically in UECs at the time of implantation in the rat and in response to a substitute blastocyst (filament) suggesting a role for these proteins in the cytoskeletal rearrangements that facilitate uterine receptivity and blastocyst-epithelial adhesion. Their loss within the implantation chamber possibly allows the subsequent invasion of the embryo.  相似文献   

12.
Adhesion molecules play an important part in preparing uterine epithelial cells for receptivity to the implanting embryo, and their rearrangement is crucial in allowing successful implantation. CD43 is an adhesion molecule which has previously been suggested to take part in implantation in mice. Indirect immunofluorescence microscopy localising CD43 was performed on uterine tissue during early pregnancy, and tissue obtained from ovariectomised rats administered with ovarian hormones. Western blotting was performed during early pregnancy on isolated epithelial cells and ovariectomised rats for comparison of the amount of CD43. Immunofluorescence microscopy showed CD43 was situated basally in uterine luminal epithelial cells on day 1 of pregnancy and during oestrogen administration, corresponding to a 95-kDa band of CD43 seen in western blotting. At the time of implantation, and during progesterone or progesterone plus oestrogen combined treatment, CD43 is apical in uterine luminal epithelial cells, resulting in an 85-kDa form of CD43. We suggest that a de-glycosylated form of CD43 moves from basally to apically at the time of implantation, thus facilitating blastocyst attachment to uterine epithelial cells as well as their removal.  相似文献   

13.
Embryonic development of the Chinese hamster (Cricetulus griseus) was studied from the onset of implantation to the formation of the parietal yolk sac placenta. Implantation began on day 6 of pregnancy, when the embryo became fixed to the uterine luminal epithelium. At this time there was no zona pellucida, and microvilli of the trophoblast and uterine epithelium were closely apposed. Stromal cells immediately adjacent to the implantation chamber began to enlarge and accumulate glycogen. By day 7 the mural trophoblast penetrated the luminal epithelium in discrete area. The trophoblast appeared to phagocytize uterine epithelial cells, although epithelium adjoining the points of penetration was normal. In other areas nascent apical protrusions from the uterine epithelium indented the surface of the trophoblast. The epiblast had enlarged and both visceral and parietal endoderm cells were present. The well-developed decidual cells were epithelioid and completely surrounded the implantation chamber. On day 8 the uterine epithelium had disappeared along the mural surface of the embryo. The embryonic cell mass was elongated and filled the yolk sac cavity. Reichert's membrane was well developed. The uterine epithelial basal lamina was largely disrupted, and the trophoblast was in direct contact with decidual cells. Primary and secondary giant trophoblast cells were present and in contact with extravasated maternal blood. The mural trophoblast formed channels in which blood cells were found in close proximity to Reichert's membrane. Decidual cells were in contact with capillary epithelium and in some cases formed part of the vessel wall. Structural changes occurring in the embryo and endometrium during implantation in the Chinese hamster are described for the first time in this report and are compared to those described for some other myomorph rodents.  相似文献   

14.
The presence and distribution of heparin-binding epidermal growth factor in rat uterine epithelial cells was determined immunohistochemically and localized ultrastructurally. Rat uterine tissue was examined on days 1, 3, 6 and 8 of pregnancy and it was found that while presence of this growth factor was evident from day 1, spatial reorganization occurred by the time of blastocyst implantation. Strong apical staining was evident from day 6 to day 8, day 6 being the approximate time of blastocyst implantation. Electron microscopy further revealed that this growth factor while shown to be expressed very strongly apically from day 6, actually localized on the plasma membrane only after attachment of the blastocyst. This suggests that heparin-binding epidermal growth factor is not involved in the initial stages of implantation but is more likely involved in the post attachment stages of pregnancy.  相似文献   

15.
In preparation for blastocyst implantation, uterine luminal epithelial cells express new cell adhesion molecules on their apical plasma membrane. Since one mechanism epithelial cells employ to regulate membrane polarity is the establishment of specific membrane-cytoskeletal interactions, this study was undertaken to determine if new cytokeratin (CK) intermediate filament assemblies are expressed in endometrial epithelial cells during developmental stages related to blastocyst implantation. Type-specific CK antibodies were used for immunocytochemical and immunoblot analyses of 1) intermediate filament networks of the endometrial epithelium during embryo implantation in rabbits and 2) proliferative and secretory phases of the human menstrual cycle. CK18, a type I CK found in most simple epithelia, was expressed in all luminal and glandular epithelial cells of both the human and rabbit endometrium at all developmental stages analyzed; it was also strongly expressed in trophectoderm of the implanting rabbit blastocyst. In contrast, CK13, another type I cytokeratin, exhibited a regulated expression pattern in luminal, but not glandular, epithelial cells of secretory phase human and peri-implantation stage rabbit endometrium. Furthermore, in the rabbit implantation chambers, CK13 was predominantly localized at the cell apex of luminal epithelial cells, where it assembled into a dense filamentous network. These data suggest that the stage-specific expression of CK13 and a reorganization of the apical intermediate filament cytoskeleton of uterine luminal epithelial cells may play important functions in preparation for the implantation process.  相似文献   

16.
Garris DR  Garris BL 《Tissue & cell》2003,35(4):233-242
A scanning electron microscopic (SEM) and morphometric analysis of the topographical changes occurring in the uterine luminal epithelial layer in association with decidual tissue (DT) formation in guinea pigs was undertaken in order to elucidate the surface ultrastructural characteristics which occur during the process of endometrial differentiation. Experimentally induced decidua formation was promoted by mechanical stimulation of the antimesometrial luminal surface during the period of maximal uterine sensitivity to stromal differentiation. DT-associated remodeling of the uterine epithelial layer was subsequently examined by light and SE microscopic analysis for apical epithelial and luminal contour alterations associated with decidua growth. Cytological changes in the luminal surface associated with DT induction included sparse microvillus growth from the apical epithelial surface, accompanied by the appearance of prominent apical membrane surface protrusions and endometrial gland openings as compared with non-DT-stimulated control samples. Decidua surface growth was characterized by a short, sparse epithelial microvillus pattern present over a highly contoured luminal uterine surface on which contoured gland openings were both numerous and prominent. These surface modifications contrasted with the flat, non-decidualized luminal surface contour which was covered by distinct, microvilli-laden, apical cell membranes, and defined by prominent intercellular membrane borders. The uterine surface at the time of maximal DT formation (i.e. growth) closely resembled that of a uterine luminal surface undergoing apoptosis and subsequent cellular reabsorption, characterized by disrupted cell surface membranes, sparse microvillus surfaces and prominent epithelial contours reflecting stromal tissue and vasculature involution. These data indicate that the alterations in the uterine luminal surface associated with DT formation are reminiscent of the endometrial changes associated with the initiation of early placentation, and may be used as a model for the analysis of the role of epithelial cell surface modifications associated with the induction and support of interstitial blastocyst implantation and early decidua formation.  相似文献   

17.
Affinity-purified antibodies to cellCAM-105, an adhesive cell surface glycoprotein, were used in immunohistochemical investigations of rat uteri at various functional stages: (i) the oestrous, pro-oestrous, metoestrous, and dioestrous stages of the oestrous cycle, (ii) Days 1-8 of normal pregnancy, (iii) delayed implantation, (iv) 18 h after oestrogen reactivation from delay of implantation, and (v) juvenile rats, and normal ovariectomized adults, respectively, before and after experimental injection of progesterone and/or oestrogen. CellCAM-105 was present in the apical zones of the luminal and glandular epithelium cells in a stage-specific and hormone-dependent manner. The results indicate that: (1) steroid hormones are essential for the expression of cellCAM-105 in the uterine epithelial cells; (2) progesterone induces cellCAM-105 expression in the glandular epithelium, and oestrogen induces cellCAM-105 expression in the luminal epithelium; (3) progesterone induces down-regulation of cellCAM-105 from the surface of the uterine luminal epithelium of juvenile rats; (4) cellCAM-105 is absent in the luminal epithelial cells but present in the glandular epithelial cells of the rat uterus at the time of blastocyst implantation.  相似文献   

18.
Summary The electron microscopical appearance of the luminal cell surface of the uterine epithelium in mouse and man was similar at similar stages of the functional activity of the epithelial cells. The inactive stage was characterized by 0.1 long microvilli, the stage of the sperm passage at the time of ovulation was characterized by 1 long microvilli, and that of the egg implantation by an irregular cell surface with several large projections.The similarity of structural changes in the two species might imply a basic function of the cell membrane in uterine physiology. The morphological changes of the cell membrane indicate that its physical or chemical properties might be changed during the different functional states of the cell.Supported by a grant from Stifteken Therese och Johan Anderssons Minne.  相似文献   

19.
20.
Evidence that prostaglandins are involved in intercellular communication during blastocyst implantation suggested that development and loss of uterine sensitivity to deciduogenic stimuli during early pregnancy might depend upon changes in uterine capacity to mobilize arachidonic acid from phospholipid. We measured levels of arachidonic acid in lipid fractions on Day 6 of pregnancy in uterine segments containing implantation sites, in uterine segments between implantation sites, and in luminal epithelial cells after a deciduogenic stimulus. Arachidonic acid in uterine phospholipid was depleted at implantation sites. With an intrauterine deciduogenic stimulus of hormonally primed ovariectomized rat uteri, the arachidonic acid content of the luminal epithelium decreased. When the fatty acid composition of the luminal epithelium was examined during pseudopregnancy and after progestin-estrogen treatment, however, no changes in arachidonic acid composition and content were observed. These data suggest that during blastocyst implantation, luminal epithelial cells at implantation sites mobilize arachidonic acid from phospholipid for prostaglandin synthesis, but that uterine sensitivity and the capacity to synthesize prostaglandins in response to the blastocyst does not depend upon changes in arachidonic acid levels in uterine phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号