首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent serological and molecular surveys of different primate species allowed the characterization of several Kaposi's sarcoma-associated herpesvirus (KSHV) homologues in macaques, African green monkeys, chimpanzees, and gorillas. Identification of these new primate rhadinoviruses revealed the existence of two distinct genogroups, called RV1 and RV2. Using a degenerate consensus primer PCR method for the herpesvirus DNA polymerase gene, the presence of KSHV homologues has been investigated in two semi-free-ranging colonies of eight drill (Mandrillus leucophaeus), five mandrill (Mandrillus sphinx), and two hybrid (Mandrillus leucophaeus-Mandrillus sphinx) monkeys, living in Cameroon and Gabon, Central Africa. This search revealed the existence of not only two distinct KSHV homologues, each one belonging to one of the two rhadinovirus genogroups, but also of two new betaherpesvirus sequences, one being close to cytomegaloviruses and the other being related to human herpesviruses 6 and 7 (HHV-6 and -7). The latter viruses are the first simian HHV-6 and -7 homologues identified to date. These data show that mandrill and drill monkeys are the hosts of at least four novel distinct herpesviruses. Moreover, mandrills, like macaques and African green monkeys, harbor also two distinct gamma-2 herpesviruses, thus strongly suggesting that a second gamma-2 herpesvirus, belonging to the RV2 genogroup, may exist in humans.  相似文献   

2.
Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.   总被引:6,自引:0,他引:6  
The evolution of the Old World monkey tribe Papionini, composed of macaques, baboons, mandrills, drills, and mangabeys, was examined using mitochondrial DNA (mtDNA) sequence data on the cytochrome oxidase subunit II gene. When analyzed cladistically, these data support a baboon clade of savannah (Papio) plus gelada (Theropithecus) baboons, as well as a clade containing drill (Mandrillus) plus mangabey (Cerocebus) genera. This result stands in opposition to most morphological phylogenies, which break up the baboon clade by placing Papio and Mandrillus as sister taxa and Theropithecus as a more distantly related lineage. Analyses of COII gene sequences also suggest that the papionin ancestral stock divided into two lineages, one leading to macaques and the other to the purely African genera. From a molecular evolutionary perspective, the papionin COII gene sequences reveal a pattern of amino acid replacements concentrated in the regions spanning the mitochondrial membrane.  相似文献   

3.
Maternal inheritance of mitochondrial DNA (mtDNA) was originally thought to prevent any response to selection on male phenotypic variation attributable to mtDNA, resulting in a male‐biased mtDNA mutation load (“mother's curse”). However, the theory underpinning this claim implicitly assumes that a male's mtDNA has no effect on the fitness of females he comes into contact with. If such “mitochondrially encoded indirect genetics effects” (mtIGEs) do in fact exist, and there is relatedness between the mitochondrial genomes of interacting males and females, male mtDNA‐encoded traits can undergo adaptation after all. We tested this possibility using strains of Drosophila melanogaster that differ in their mtDNA. Our experiments indicate that female fitness is influenced by the mtDNA carried by males that the females encounter, which could plausibly allow the mitochondrial genome to evolve via kin selection. We argue that mtIGEs are probably common, and that this might ameliorate or exacerbate mother's curse.  相似文献   

4.
Since simian immunodeficiency virus (SIV) was found to be the source of the human AIDS pandemic, a major goal has been to characterize the diversity of SIV strains in the wild and to assess their potential for crossover into humans. In the present study, SIV was isolated from a seropositive drill (Mandrillus leucophaeus) and three seropositive mandrills (Mandrillus sphinx) by using macaque peripheral blood mononuclear cells (PBMC). Full-length sequences were obtained from a drill and mandrill and designated SIVdrl1FAO and SIVmnd5440, respectively. A 182-bp fragment of the pol genes of the two remaining mandrill SIV isolates was also analyzed. Phylogenetic analyses demonstrated that SIVdrl1FAO formed a monophyletic clade with SIVmnd5440 and SIVmndM14, recently designated SIVmnd type 2. Both the SIVdrl and SIVmnd type 2 genomes carried a vpx gene and appeared to share a common ancestor with SIVrcm in the 5' region of the genome and with SIVmndGB1 (type 1) in the 3' region of the genome. A statistically significant recombination breakpoint was detected at the beginning of envelope, suggesting that the viruses were descendents of the same recombinant. Phylogenetic analysis of vpx and vpr genes demonstrated that the vpx genes formed a monophyletic cluster that grouped with vpr from SIVagm. In addition, both SIVdrl1FAO and SIVmnd5440 replicated in human PBMC and therefore could pose a risk of transmission to the human population.  相似文献   

5.
Previous research has shown that members of the unisexual hybrid complex of the genus Ambystoma possess a mitochondrial genome that is unrelated to their nuclear parental species, but the origin of this mitochondrion has remained unclear. We used a 744-bp fragment of the mitochondrial gene cytochrome b within a comparative phylogenetic framework to infer the maternal ancestor of this unisexual lineage. By examining a broader range of species than has previously been compared, we were able to uncover a recent maternal ancestor to this complex. Unexpectedly, Ambystoma barbouri, a species whose nuclear DNA has not been identified in the unisexuals, was found to be the recent maternal ancestor of the individuals examined through the discovery of a shared mtDNA haplotype between the unisexuals and A. barbouri. Based on a combination of sequence data and glacial patterning, we estimate that the unisexual lineage probably originated less than 25 000 years ago. In addition, all unisexuals examined showed extremely similar mtDNA sequences and the resultant phylogeny was consistent with a single origin for this lineage. These results confirm previous suggestions that the unisexual Ambystoma complex was formed from a hybridization event in which the nuclear DNA of the original maternal species was subsequently lost.  相似文献   

6.
Few botanical studies have explored the potential of nuclear ribosomal DNA (nrDNA) and mitochondrial DNA (mtDNA) data obtained through genome skimming for phylogeny reconstruction. Here, we analyzed the phylogenetic information included in the nrDNA and mtDNA of 44 species of the “Adenocalymma‐Neojobertia” clade (Bignoniaceae). To deal with intraindividual polymorphisms within the nrDNA, different coding schemes were explored through the analyses of four datasets: (i) “nrDNA contig,” with base call following the majority rule; (ii) “nrDNA ambiguous,” with ambiguous base calls; (iii) “nrDNA informative,” with ambiguities converted to multistate characters; and, (iv) “mitochondrial,” with 39 mitochondrial genes. Combined analyses using the nrDNA and mtDNA data and previously published “plastid” datasets were also conducted. Trees were obtained using Maximum Likelihood and Bayesian criteria. The congruence among genomes was assessed. The nrDNA datasets were shown to be highly polymorphic within individuals, while the “mitochondrial” dataset was the least informative, with 0.36% of informative bases within the ingroup. The topologies inferred using the nrDNA and mtDNA datasets were broadly congruent with the tree derived from the analyses of the “plastid” dataset. The topological differences recovered were generally poorly supported. The topology that resulted from the analyses of the “combined” dataset largely resembles the “plastid” tree. These results highlight limitations of nuclear ribosomal DNA and mitochondrial genes for phylogeny reconstruction obtained through genome skimming and the need to include more data from both genomes. The different topologies observed among genomes also highlight the importance of exploring data from various genomes in plant phylogenetics.  相似文献   

7.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

8.
Although it is known that the hybrid male mouse is sterile just like any other animal’s heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.  相似文献   

9.
Two subspecies of the European abalone have been morphologically recognized: Haliotis tuberculata tuberculata, present in the North Atlantic, and Haliotis tuberculata coccinea, present in the Canary Islands. Among the different nuclear markers used to differentiate these two subspecies, the sperm lysin gene was the most reliable, leading to a 2.2% divergence. Concerning the subunit I of the mitochondrial cytochrome oxydase gene (COI), we observed a difference of 3.3% between the two subspecies. In the North Atlantic, an introgression of mitochondrial DNA from H. tuberculata coccinea to H. tuberculata tuberculata was evident in around 30% of individuals. Due to this difference, we were able to experimentally detect the transfer of paternal mitochondrial DNA (mtDNA) by specific quantitative polymerase chain reaction measurements. The presence of the two mtDNA signatures was also detected in 20% of individuals tested in the field. Moreover, one mt DNA hybrid sequence was identified. The sequencing of this mitochondrial DNA hybrid revealed a mosaic structure with many specific mutations. The origin of this hybrid sequence is discussed.  相似文献   

10.
By crossing Brachionus plicatilis s.s. NH1L strain and German strain, we obtained two types of hybrids, NH1L female × German male designated as NXG and German female × NH1L male designated as GXN. To confirm the crossing of the two hybrid strains at the genetic level, random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis using 10 kinds of primers (10 and 12 mers) was carried out. Some amplified DNA fragments from RAPD of the hybrid strain showed mixed patterns of both parental strains, thus confirming that both hybrids were crossbreeds of the NH1L and German strains. Using these hybrids, we investigated the mode of mitochondrial inheritance in B. plicatilis. Full-length mtDNA of the four strains was amplified by PCR, and digested with restriction enzymes to obtain restriction fragment length polymorphism (RFLP) patterns. Both hybrid strains had the same RFLP patterns as their female parents. This result shows that mitochondrial inheritance in rotifers is maternal. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont and R. Rico-Martínez Advances in Rotifer Research  相似文献   

11.
Genetic variation of mitochondrial DNA (mtDNA) in 18 great tits (Parus major) from three neighboring localities in Sweden was investigated with eight tetranucleotide restriction endonucleases. The 18 individuals could be separated into 13 different maternal lineages. The high number of female lineages present in this regional population contrasts with a low level of sequence divergence between the different mtDNA clones, with a mean of 0.19% sequence divergence between all individuals. There was no obvious spatial structuring of mtDNA clones among the three localities. The presence of a high number of different clones with a low degree of sequence divergence could be explained by the effects of a large long-term effective population size, with the mtDNA clones having diverged about 25,000–200,000 years ago.This study was supported by the Swedish Natural Science Research Council, the Erik Philip-Sörensen Foundation, and the Nilsson-Ehle Foundation.  相似文献   

12.
To study the genetic structure of the Tikúna tribe, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 187 Amerindians from eight Tikúna villages located in the Brazilian Amazon. The central position of these villages in the continent makes them relevant for attempts to reconstruct population movements in South America. In this geographic region, there is particular concern regarding the genetic structure of the Tikúna tribe, formerly designated “enigmatic” due to its remarkable degree of intratribal homogeneity and the scarcity of private protein variants. In spite of its large population size and geographic distribution, the Tikúna tribe presents marked genetic and linguistic isolation. All individuals presented indigenous mtDNA haplogroups. An intratribal genetic heterogeneity pattern characterized by two highly homogeneous Tikúna groups that differ considerably from each other was observed. Such a finding was unexpected, since the Tikúna tribe is characterized by a social system that favors intratribal exogamy and patrilocality that would lead to a higher female migration rate and homogenization of the mtDNA gene pool. Demographic explosions and religious events, which significantly changed the sizes and compositions of many Tikúna villages, may be reflected in the genetic results presented here. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Many land plants deviate from the maternal pattern of organelle inheritance. In this study, heterologous mitochondrial and chloroplast probes were used to investigate the inheritance of organelle genomes in the progeny of an intergeneric cross. The seed parent was LB 1-18 (a hybrid of Citrus reticulata Blanco cv. Clementine x C. paradisi Macf. cv. Duncan) and the pollen parent was the cross-compatible species Poncirus trifoliata (L.) Raf. All 26 progeny examined exhibited maternal inheritance of plastid petA and petD loci. However, 17 of the 26 progeny exhibited an apparent biparental inheritance of mitochondrial atpA, cob, coxII, and coxIII restriction fragment length polymorphisms (RFLPs) and maternal inheritance of mitochondrial rrn26 and coxI RFLPs. The remaining nine progeny inherited only maternal mitochondrial DNA (mtDNA) configurations. Investigations of plant mitochondrial genome inheritance are complicated by the multipartite structure of this genome, nuclear gene control over mitochondrial genome organization, and transfer of mitochondrial sequences to the nucleus. In this study, paternal mtDNA configurations were not detected in purified mtDNA of progeny plants, but were present in progeny DNA preparations enriched for nuclear genome sequences. MtDNA sequences in the nuclear genome therefore produced an inheritance pattern that mimics biparental inheritance of mtDNA.  相似文献   

14.
A “gene tree” is the phylogeny of alleles or haplotypes for any specified stretch of DNA. Gene trees are components of population trees or species trees; their analysis entails a shift in perspective from many of the familiar models and concepts of population genetics, which typically deal with frequencies of phylogenetically unordered alleles. Molecular surveys of haplotype diversity in mitochondrial DNA (mtDNA) have provided the first extensive empirical data suitable for estimation of gene trees on a microevolutionary (intraspecific) scale. The relationship between phylogeny and geographic distribution constitutes the phylogeographic pattern for any species. Observed phylogeographic trees can be interpreted in terms of historical demography by comparison to predictions derived from models of gene lineage sorting, such as inbreeding theory and branching-process theory. Results of such analyses for more than 20 vertebrate species strongly suggest that the demographies of populations have been remarkably dynamic and unsettled over space and recent evolutionary time. This conclusion is consistent with ecological observations documenting dramatic population-size fluctuations and range shifts in many contemporary species. By adding an historical perspective to population biology, the gene-lineage approach can help forge links between the disciplines of phylogenetic systematics (and macroevolutionary study) and population genetics (microevolution). Preliminary extensions of the “gene tree” methodology to haplotypes of nuclear genes (such as Adh in Drosophila melanogaster) demonstrate that the phylogenetic perspective can also help to illuminate molecular-genetic processes (such as recombination or gene conversion), as well as contribute to knowledge of the origin, age, and molecular basis of particular adaptations.  相似文献   

15.
The marriage structure of Nganasans during the time period from 1796 to 1991 and genealogy of carriers of mitochondrial DNA haplotypes was studied in a sample of 280 individuals. It was shown that, from the beginning of its formation to the late 1970s, the population exhibited high endogamy (1976, 83.8%; 1926, 88.4%; 1976, 74.3%). The main source of traditional marriage migration (preferentially female) was populations of Entsy and, indirectly, Nentsy. Intense assimilation of Nganasans by the immigrant population, and to a lesser extent, by Dolgans, in the second half of the 20th century resulted in a reduction of endogamy index in Avam Nganasans to 42.5% by 1991. Assimilation by the immigrants was predominantly paternal, promoting preservation of the historically formed genetic diversity of the Nganasan mitochondrial gene pool. Genealogical analysis of mtDNA haplotypes showed that a relatively high total frequency of Western Eurasian mtDNA haplogroups (20.4%) in the Mongoloid (according to anthropological type) Nganasan population is explained not only by the common ethnic origin with Entsy and Nentsy, but also by direct marriage migration from the Entsy population and indirect marriage migration, from the Nentsy population. This migration led to accumulation of Entsy-Nentsy maternal lineages in the genealogy of Avam Nganasans (38.9% of the total number). Of all mtDNA haplotypes, 28.6% were introduced to Avam Nganasans by female Entsy and Nentsy, whereas the total frequency of these haplotypes was 0.204. Genetic diversity of mitochondrial DNA haplotypes was 0.935.  相似文献   

16.
Summary. The non-Mendelian inheritance of organellar DNA is common in most plants and animals. In the isogamous green alga Chlamydomonas species, progeny inherit chloroplast genes from the maternal parent, as paternal chloroplast genes are selectively eliminated in young zygotes. Mitochondrial genes are inherited from the paternal parent. Analogically, maternal mitochondrial DNA (mtDNA) is thought to be selectively eliminated. Nevertheless, it is unclear when this selective elimination occurs. Here, we examined the behaviors of maternal and paternal mtDNAs by various methods during the period between the beginning of zygote formation and zoospore formation. First, we observed the behavior of the organelle nucleoids of living cells by specifically staining DNA with the fluorochrome SYBR Green I and staining mitochondria with 3,3′-dihexyloxacarbocyanine iodide. We also examined the fate of mtDNA of male and female parental origin by real-time PCR, nested PCR with single zygotes, and fluorescence in situ hybridization analysis. The mtDNA of maternal origin was completely eliminated before the first cell nuclear division, probably just before mtDNA synthesis, during meiosis. Therefore, the progeny inherit the remaining paternal mtDNA. We suggest that the complete elimination of maternal mtDNA during meiosis is the primary cause of paternal mitochondrial inheritance. Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 901-0213, Japan.  相似文献   

17.
Mitochondrial DNA (mtDNA) is the traditional workhorse for reconstructing evolutionary events. The frequent use of mtDNA in such analyses derives from the apparent simplicity of its inheritance: maternal and lacking bi-parental recombination. However, in hybrid zones, the reproductive barriers are often not completely developed, resulting in the breakdown of male mitochondrial elimination mechanisms, leading to leakage of paternal mitochondria and transient heteroplasmy, resulting in an increased possibility of recombination. Despite the widespread occurrence of heteroplasmy and the presence of the molecular machinery necessary for recombination, we know of no documented example of recombination of mtDNA in any terrestrial wild vertebrate population. By sequencing the entire mitochondrial genome (16761bp), we present evidence for mitochondrial recombination in the hybrid zone of two mitochondrial haplotypes in the Australian frillneck lizard (Chlamydosaurus kingii).  相似文献   

18.
A 44-year-old female with familial hypocalciuric hypercalcemia (FHH) due to a homozygous missense mutation (Pro40Ala) in calcium sensing receptor (CaSR) gene has type 2 diabetes mellitus. The identical heterozygous mutation of CaSR gene was observed in consanguineous parents and all other family members examined except her two sisters. Many subjects with abnormal glucose tolerance were observed in this family, which is compatible with maternal inheritance. Mitochondrial function of complex I (NADH-coenzyme Q reductase) activity in cybrid cells between mitochondrial DNA (mtDNA)-deleted (rho(0)) HeLa cells and mtDNA from the proband was decreased by 35%. The proband has eight substitutions and among these 4833 A/G is a missense substitution in NADH dehydrogenase 2 gene and may probably be a major pathogenic mutation of impaired complex I activity. These results suggest that coexistence of nuclear gene and mtDNA mutations may have caused or modified the development of abnormal glucose tolerance in this family.  相似文献   

19.
Secondary contact between closely related taxa routinely occurs during postglacial migrations. After initial contact, the location of hybrid zones may shift geographically or remain spatially stable over time in response to various selective pressures or neutral processes. Studying the extent and direction of introgression using markers having contrasted levels of gene flow can help unravel the historical dynamics of hybrid zones. Thanks to their contrasted maternal and paternal inheritance, resulting in different levels of gene flow for mitochondrial and chloroplast DNA (mtDNA and cpDNA), the Pinaceae stand out as a relevant biological model for this purpose. The objective of the study was to assess whether the hybrid zone between Abies balsamea and Abies lasiocarpa (two largely distributed Pinaceae) has moved or remained stable over time by analysing the distribution of cytoplasmic DNA variation as well as published palaeobotanical data. Interspecific gene flow was higher for cpDNA than mtDNA markers; hence, the geographic distribution of mitotypes was more congruent with species distributions than chlorotypes. This genetic signature was contrary to expectations under a moving hybrid zone scenario, as well as empirical observations in other conifers. Genetic evidence for this rare instance of stable hybrid zone was corroborated by the colonization chronology derived from published fossil data, indicating that the two fir species initially came into contact in the area corresponding to the current sympatric zone 11 kyr ago. While an explanatory analysis suggested the putative influence of various environmental factors on the relative abundance of cytoplasmic genome combinations, further research appears necessary to assess the role of both demographic history and selective factors in driving the dynamics of hybrid zones.  相似文献   

20.
Doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA has been reported in the blue mussel Mytilus galloprovincialis. In DUI, males inherit both paternal (M type) and maternal (F type) mtDNA. Here we investigated changes in M type mtDNA copy numbers and mitochondrial mass in testicular cells by real‐time polymerase chain reaction and flow cytometry. The ratios of M type mtDNA copy numbers to nuclear DNA content were not different between haploid (1n), diploid (2n) and tetraploid (4n) spermatogenic cells. The mitochondrial mass decreased gradually during spermatogenesis. These results suggest that mtDNA and mitochondrial mass are maintained during spermatogenesis. We then traced M type mtDNA in larvae after fertilization. M type mtDNA was maintained up to 24 h after fertilization in the male‐biased crosses, but decreased significantly in female‐biased crosses (predicted by Mito Tracker staining pattern). These results are strikingly different from those reported for mammals and fish, where it is well known that the mitochondria and mtDNA are reduced during spermatogenesis and that sperm mitochondria and mtDNA are eliminated soon after fertilization. Thus, the M type mtDNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the DUI system in the blue mussel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号