首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The natural cytokinin import from the root into the shoot of Urtica dioica plants was enhanced by supplying zeatin riboside (ZR) solutions of various concentrations to a portion less than 10 % of the root system after removal of their tips. After 6 h ZR pretreatment of the plants, 14CO2 was supplied for 3 h to a mature (source) leaf or to an expanding leaf and the 14C-distribution in the whole plant was determined after a subsequent dark period of 14 h. ZR substantially increased 14C fixation by the expanding leaves and also enhanced export of carbon and transport to the shoot apex. The effect of the hormone treatment was, however, more pronounced when the 14CO2 was supplied to a mature leaf. In the control plants these leaves exported carbon only to the roots: When the amount of the natural daily ZR input from the roots to the shoot was enhanced by 20%, the bulk of the 14C exported from a mature leaf moved to the shoot apex and only a minor portion of 14C was still detected in the root fraction. A several-fold increase of the natural daily ZR input into the shoot resulted in a flow of 14C only to the growing parts of the shoot. The results suggest control of the sink strength of the shoot apex by ZR in Urtica diocia.  相似文献   

2.
PATE  J. S. 《Annals of botany》1966,30(1):93-109
In Pisum arvense, the amides and amino-acids normally suppliedto the shoot in the transpiration stream transfer carbon toprotein largely throught the amino-acids, aspartic acid (+asparagine),glutarnic acid (+glutamine), threonine, lysine, arginine, andproline. Carbon from carbon dioxide enters the protein of photosynthesizingtissues through an essentially complementary set of amino-acidsincluding glycine, alanine, serine, valine, and the aromaticamino-acids tyrosine, phenylalnine, and histidine. Young tissuesof the shoot synthesize certain amino-acids de novo by metabolismof sugars supplied from photosynthesizing leaves. Each mature leaf on a shoot contributes carbon to current synthesisof protein at the shoot apex. Sucrose accounts for more than90 per cent of the labelled carbon leaving any age of leaf whichhas been fed with 14CO2. Upper leaves supply labelled assimilatesdirectly to the shoot apex, and the radiocarbon from these assimilatesis subsequently incorporated into a wide range of amino-acidunits of protein. The majority of the labelled assimilates exportedfrom a lower leaf move downwards to the root and nodules and,in consequence, the amino-acids and amides associated with rootmetabolism are strongly represented among the compounds eventuallylabelled in the apical region of the shoot.  相似文献   

3.
The movement of 14C-labelled assimilate to the terminal meristem, stem, mature leaves, tillers and roots was measured in Loliurn perenn and Lolium temulentum after exposure to 14C02 of the youngest fully-expanded leaf and, on fewer occasions, the oldest healthy leaf on the main shoot. During early vegetative growth, the terminal meristem, tillers and roots received most of the 14C exported from the youngest leaf. As the shoot aged, more 14C was exported to the terminal meristem and tillers and less to roots. When the stem became a sizeable sink for 14C at the six-leaf (L. temulentum) or eleven-leaf (L. perenne) stage, less 14C moved to tillers and much less to roots. The terminal meristem continued to receive 14 at a steady rate throughout late vegetative growth. The transition from vegetative to reproductive growth in both species was marked by an abrupt increase in the export of 14C to stem from the upper leaf, but there was little change in the proportion of 14C which moved to the developing leaves and incipient inflorescence at the terminal meristem. At the same time, less 14C moved to tillers and much less to roots. Immediately before ear emergence, the export of 14C from the upper leaf (flag leaf) to the stem declined and the proportion moving to the ear increased, reaching a maximum of 55–75% as the ear emerged. The relative patterns of export of upper and lower leaves showed that while some 14 moved from each leaf to all meristems, the proximity of actively growing meristems appeared to be the main factor which determined the destination of most exported 14C. The distribution of 14C from upper and lower leaves was most alike in young vegetative plants of L. perenne. At later stages of development of both species, the terminal meristem and stem received most 1414C from the upper leaf, while roots and tillers received mos 1414C from the oldest leaf at the base of the shoot.  相似文献   

4.
Sucrose synthesis rate in an exporting sugar beet (Beta vulgaris L.) leaf was calculated from simultaneous measurements of export and changes in leaf sucrose level. The amount of recently fixed carbon exported was determined from net carbon assimilated minus the tracer carbon accumulated in the leaf. The relative amount of 14C accumulated in the leaf supplied with 14CO2 throughout an entire light period was recorded continuously with a Geiger-Mueller detector. To produce a continuous time course for tracer carbon accumulated in the leaf during the light period, the latter curve was superimposed on values for tracer carbon accumulated in leaves sampled at hourly intervals. Validity of the method requires that nearly all of the carbon that is exported be sucrose and that nearly all of the sucrose that is synthesized be either exported or accumulated as sucrose in the exporting leaves. These conditions appeared to be fulfilled in the situations where the method was applied. The method was used to study the effect of increasing atmospheric CO2 concentration on the rate of sucrose synthesis. Further, the method can be used in conjunction with the gathering of other data such as gas exchange, metabolite levels, and enzyme activities in a set of leaves of a similar age on the same plant. This assemblage of data was found to be useful for understanding how rates of photosynthesis, sucrose synthesis, and translocation are regulated in relation to each other in an intact plant.  相似文献   

5.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

6.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

7.
Chlorophyll and nitrogen contents were highest in leaves of middle position, similarly as photosynthetic efficiency represented by 14C fixation (maxima in leaf 5 from the top). All the leaves lost 14C after 2 weeks of 14CO2 exposure. However, the reduction in radioactivity was less in young upper leaves than in the mature lower leaves. Leaves exported 14C-photosynthates to stem both above and below the exposed leaf. Very little radioactivity was recovered from the seeds of plants in which only first or second leaves were exposed to 14CO2 implying thereby that the carbon contribution of first two leaves to seed filling was negligible. The contribution of leaves to seed filling increased with the leaf position up to the sixth leaf from the top and after the seventh leaf their contribution to seed filling declined gradually.  相似文献   

8.
Summary The effects of CO2 enrichment on plant growth, carbon and nitrogen acquisition and resource allocation were investigated in order to examine several hypotheses about the mechanisms that govern dry matter partitioning between shoots and roots. Wild radish plants (Raphanus sativus × raphanistrum) were grown for 25 d under three different atmospheric CO2 concentrations (200 ppm, 330 ppm and 600 ppm) with a stable hydroponic 150 mol 1–1 nitrate supply. Radish biomass accumulation, photosynthetic rate, water use efficiency, nitrogen per unit leaf area, and starch and soluble sugar levels in leaves increased with increasing atmospheric CO2 concentration, whereas specific leaf area and nitrogen concentration of leaves significantly decreased. Despite substantial changes in radish growth, resource acquisition and resource partitioning, the rate at which leaves accumulated starch over the course of the light period and the partitioning of biomass between roots and shoots were not affected by CO2 treatment. This phenomenon was consistent with the hypothesis that root/shoot partitioning is related to the daily rate of starch accumulation by leaves during the photoperiod, but is inconsistent with hypotheses suggesting that root/shoot partitioning is controlled by some aspect of plant C/N balance.  相似文献   

9.
Apical sencscence in G2 peas occurs only in long days in the presence of fruit. The effect of fruits could be caused by the export of a senescence hormone from the fruits to the shoot tip. Export of radiolabeled material from developing fruits of G2 peas grown in long days was therefore examined following injection of the pods with [14C]-sucrose, [14C]-acetate, or [14C]-mevalonate or after allowing the pods to photosynthesize in 14CO2 for 48 h. In all cases a small amount (<1%) of radioactivity was exported, primarily to the younger fruits on the same side of the plant and the to the shoot apex. After feeding 14CO2 to the fruit, the radiolabeled material partitioned into acidic ethyl acctate and possessed a carboxyl group. While this radioactivity had chromatographic properties similar to abscisic acid (ABA) in a number of solvent systems, it was not identical to either ABA, phascic acid or dihydrophaseic acid. The nature of the labeled material found in the apex was different in short days, in which senescence does not occur, or when the leaves were the source of the radioactive compounds. The labeled material in the apex was similar after feeding 14CO2, [14C]-acctatc, or [14C]-sucrose, but different if the fruits were injected with[14C]-mevalonate.Identification of the chemical nature of the labeled material in the apex was not possible due to the small amount present. Parallel purification of an extract from treated fruits led to the identification of N-benzoylaspartate and N-phenylacetyl-aspartate. The radiolabeled substance from the apex was run with these two chemically synthesized compounds on several gas chromatogtaphic columns, and was also recrystallized together several times. The label and the pure material did not have identical retention times; neither did they co-purify so that, while similar, the material exported to the apex is not the above compounds.  相似文献   

10.
Pedunculate oak (Quercus robur L.) was germinated and grown under nutrient non-limiting conditions for a total of 10–15 weeks at ambient CO2 concentration and 1100 μmol mol–1 CO2 either in the presence or the absence of the mycorrhizal fungus Laccaria laccata. Half of the oak trees of these treatments were exposed to drought during final growth by suspending the water supply for 21 d. Mycorrhization and elevated atmospheric CO2 each enhanced total plant biomass per tree. Whereas additional biomass accumulation of trees grown under elevated CO2 was mainly attributed to increased growth of lateral roots, mycorrhization promoted shoot growth. Water deficiency reduced biomass accumulation without affecting relative water content, but this effect was more pronounced in mycorrhizal as compared to non-mycorrhizal trees. Elevated CO2 partially prevented the development of drought stress, as indicated by leaf water potential, but did not counteract the negative effects of water deficiency on growth during the time studied. Enhanced biomass accumulation requires adaption in protein synthesis and, as a consequence, enhanced allocation of reduced sulphur produced in the leaves to growing tissues. Therefore, allocation of reduced sulphur from oak leaves was studied by flap-feeding radiolabelled GSH, the main long-distance transport form of reduced sulphur, to mature oak leaves. Export of radiolabel proceeded almost exclusively in basipetal direction to the roots. The rate of export of radioactivity out of the fed leaves was significantly enhanced under elevated CO2, irrespective of mycorrhization. A higher proportion of the exported GSH was transported to the roots than to basipetal stem sections under elevated CO2 as compared to ambient CO2. Mycorrhization did not affect 35S export out of the fed leaves, but the distribution of radiolabel between stem and roots was altered in preference of the stem. Trees exposed to drought did not show appreciable export of the 35S radioactivity fed to the leaves when grown under ambient CO2. Apparently, drought inhibited basipetal transport of reduced sulphur at the level of phloem loading and/or phloem transport. Elevated CO2 seemed to counteract this effect of drought stress to some extent, since higher leaf water potentials and improved 35S export out of the fed leaves was observed in oak trees exposed to drought and elevated CO2 as compared to trees exposed to drought and ambient CO2.  相似文献   

11.
Translocation patterns in the giant kelp, Macrocystis integrifolia Bory, were investigated in situ using 14C tracer; sources and sinks were identified. Export was first detected after 4 h of labeling; experiments were routinely 24 h continuous 14C application. Mature blades exported 14C to young blades on the same frond and on younger fronds, as well as to sporophylls and frond initials at the bases of the fronds. Blades <0.3 m from the apex imported and did not export; this distance did not change seasonally. In spring export from blades 0.3–1.25 m from the apex was exclusively upwards; older blades also exported downwards. In fall downward export began 0.5 m from the apex, and blades >2 m from the apex exported exclusively downwards. Carbon imported by frond initials, young fronds, and sporophylls in fall may partly be stored for growth in early spring. No translocation was seen in very young plants until one blade (secondary frond initial) bad been freed from the apical blade; this blade exported to the apical blade for a time, but imported when it began to develop into a frond. The second and third formed blades on the primary fronds (sporophylls also exported when <0.3 m from the apex, and later stopped. Frond initials and sporophylls on later-formed fronds did not export at all. The translocation pattern in M. integrifolia differs from that previously reported in M. pyrifera in seasonal change and in distances from the apex at which the changes take place.  相似文献   

12.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

13.
Export of amino acids to the phloem in relation to N supply in wheat   总被引:5,自引:0,他引:5  
The effect of different N supply on amino acid export to the phloem was studied in young plants of wheat (Triticum aestivum L. cv. Klein Chamaco), using the exudation in EDTA technique. Plants were grown in a growth cabinet in pots with sand, and supplied with nutrient solutions of different NO3? concentrations. When plants were grown for 15 days with nutrient solutions containing 1.0, 3.0, 5.0, 10.0, 15.0 or 20.0 mM KNO3, the exudation rate of sugars from the phloem was unaffected by N supply, but sugars accumulated in the leaf tissue when the N supply was limiting for growth. On the other hand, the rate of exudation of amino acids was proportional to the NO3? concentration in the nutrient solution. When the supply of N to plants grown for 15 days with 15.0 mM NO3? was interrupted, the exudation of sugars was again unaffected, but there was a fast decrease in the amount of amino acids exudated, and of the concentration of amino acids and nitrogen in the tissues. Also, when 10-day-old plants grown without N were supplied with 15.0 mM NO3?, there was a sharp increase in the exudation of amino acids, without changes in the amount of sugar exudated. The rate of exudation of amino acids to the phloem was independent of the concentration of free amino acids in the leaves in all three types of experiment. Asp was the most abundant amino acid in the leaf tissue, while Glu was the one most abundant in the phloem exudate. Asp and Ala were exported to the phloem at a rate lower than expected from their leaf tissue concentrations, indicating some discrimination. On the contrary, Glu showed a preferential export at low N supply. It is concluded that the rate of amino acid export from the leaf to the phloem is dependent on the N available to the plant. This N is used for synthesis of leaf protein when the supply is low, exported to the phloem when supply is adequate, and accumulated in the storage pool when supply is above plant demand.  相似文献   

14.
Aloni B  Daie J  Wyse RE 《Plant physiology》1986,82(4):962-966
The effect of gibberellic acid (GA3) on sucrose export from source leaves was studied in broad bean (Vicia faba L.) plants trimmed of all but one source and one sink leaf. GA3 (10 micromolar) applied to the source leaf, enhanced export of [14C]sucrose (generated by 14CO2 fixation) to the root and to the sink leaf. Enhanced export was observed with GA treatments as short as 35 minutes. When GA3 was applied 24 hours prior to the 14CO2 pulse, the enhancement of sucrose transport toward the root was abolished but transport toward the upper sink leaf was unchanged. The enhanced sucrose export was not due to increased photosynthetic rate or to changes in the starch/sucrose ratio within the source leaf; rather, GA3 increased the proportion of sucrose exported. After a 10-min exposure to [14C]GA3, radioactivity was found only in the source leaf. Following a 2 hour exposure to [14C]GA3, radioactivity was distributed along the entire stem and was present in both the roots and sink leaf. Extraction and partitioning of GA metabolites by thin layer chromatography indicated that there was a decline in [14C]GA3 in the lower stem and root, but not in the upper stem. This pattern of metabolism is consistent with the disappearance of the GA3 effect in the lower stem with time after treatment. We conclude that in the short term, GA3 enhances assimilate export from source leaves by increasing phloem loading. In the long term (24 hours), the effect of GA3 is outside the source leaf. GA3 accumulates in the apical region resulting in enhanced growth and thus greater sink strength. Conversely, GA3 is rapidly metabolized in the lower stem thus attenuating any GA effect.  相似文献   

15.
Quantitative studies of the translocation of radiocarbon from a young expanded leaf of two tall varieties (Improved Pilot and Thomas Laxton) and two dwarf varieties (Little Marvel and Meteor) of Pisum sativum showed that 40 to 45 per cent of the radiocarbon was exported from the 14CO2 treated leaf after 24 hours in all four varieties. Although substantial export to the upper shoot always occurred it was more marked in the two tall varieties. Pre-treatment with GA did not affect total fixation but increased total export from the 14CO2 treated leaf in cv. Meteor and decreased it in cv. Improved Pilot. GA had no effect on the translocation pattern in the tall plants but modified that of the dwarf plants to correspond to that found in the tall varieties.  相似文献   

16.
L. T. Evans  I. F. Wardlaw 《Planta》1966,68(4):310-326
Summary It is widely accepted that the floral stimulus produced in leaves is carried to the shoot apex passively in the phloem with the assimilate stream. Three kinds of evidence presented here suggest that the floral stimulus moves independently of the assimilates.Simultaneous determination of the velocities of translocation out of the seventh leaf blade, in comparable plants under the same conditions, yielded estimates of 1–2.4 cm/hr for the floral stimulus, and 77–105 cm/hr for 14C-labelled assimilates.The effect of the size of the seventh leaf on its ability to export assimilates or to initiate flowering was quite different. Leaves with only 14–26% of their final blade area emerged exported little assimilate, yet were highly active in inducing flowering.The effect of DCMU applications at a range of concentrations on the translocation of assimilates was quite different from their effect on the flowering response.  相似文献   

17.
Summary Seed- and clonally-propagated plants of Big Sagebrush (Artemisia tridentata var.tridentata) were grown under atmospheric carbon dioxide regimes of 270, 350 and 650 μl l−1 and fed toMelanoplus differentialis andM. sanguinipes grasshoppers. Total shrub biomass significantly increased as carbon dioxide levels increased, as did the weight and area of individual leaves. Plants grown from seed collected in a single population exhibited a 3–5 fold variation in the concentration of leaf volatile mono- and sesquiterpenes, guaianolide sesquiterpene lactones, coumarins and flavones within each CO2 treatment. The concentration of leaf allelochemicals did not differ significantly among CO2 treatments for these seed-propagated plants. Further, when genotypic variation was controlled by vegetative propagation, allelochemical concentrations also did not differ among carbon dioxide treatments. On the other hand, overall leaf nitrogen concentration declined significantly with elevated CO2. Carbon accumulation was seen to dilute leaf nitrogen as the balance of leaf carbon versus nitrogen progressively increased as CO2 growth concentration increased. Grasshopper feeding was highest on sagebrush leaves grown under 270 and 650 μl l−1 CO2, but varied widely within treatments. Leaf nitrogen concentration was an important positive factor in grasshopper relative growth but had no overall effect on consumption. Potential compensatory consumption by these generalist grasshoppers was apparently limited by the sagebrush allelochemicals. Insects with a greater ability to feed on chemically defended host plants under carbon dioxide enrichment may ultimately consume leaves with a lower nitrogen concentration but the same concentration of allelochemicals. Compensatory feeding may potentially increase the amount of dietary allelochemicals ingested for each unit of nitrogen consumed.  相似文献   

18.
We measured the pattern of export of 14C-assimilate from reproductive spikes and leaves subtending spikes in Plantago aristata and P. virginica. In P. arislata, little 14carbon was exported to any other reproductive metamer (leaf + associated spike) from the leaf subtending a flowering spike. In P. virginica a large amount was exported. Thus, like clonal species, rosette species can vary in patterns of carbon integration among the repeated morphological subunits comprising an individual. When considered in the context of other studies, these data suggest that comparisons of carbon integration in species differing in morphological complexity would be useful in trying to understand the evolution of patterns of carbon integration in plants.  相似文献   

19.
Using water infiltration of the plant and individual shoots with the subsequent intercellular liquid extraction by the pressure chamber, dynamics of the movement 14C-photosynthates from cell to apoplast, and 14C distribution among photosynthetic products in mesophyll cells and apoplast were studied. The relative quantity of 14C-photosynthetes in leaf apoplast depended on growing conditions; drought increased, and nitrate supply decreased it. When the middle leaves absorbed 14CO2, photosynthates moving down in stem phloem appeared in intercellular space, where they were transported up by transpiration stream. 14C-photosynthates entering to the apex and young leaves were utilized a accumulated, and photosynthates transported to the mature leaves were reloaded into the phloem and reexported. Thus, photosynthates circulated through the plant and were redistributed to the plant organs according to their transpiration. In leaf apoplast photosynthetic sucrose was partly hydrolyzed to glucose and fructose. This increased under high nitrogen supply. The result indicate that apoplast sucrose hydrolysis is the basic cause of the reduction of photosynthate flux from leaves when the nitrate concentration in soil increases.  相似文献   

20.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号