首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study offers an insight into why Trypanosoma cruzi epimastigotes lose their capacity to differentiate into metacyclic forms, if maintained in culture media long-term through serial passages. The biological and metabolic behaviour of two T. cruzi strains isolated from various origins (human, opossum), and maintained under two schedules (alternate triatomine/mouse passages and serial culture media) were compared. To determine the effect of the environment on the parasites, the epimastigotes were grown under extreme conditions (high and low glucose concentrations), and the glucose consumption, ammonia production and changes in pH, either in one compartment (along the growth curve) or two compartments (induced metacyclogenesis) were compared. The glucose effect on the stages involved in metacyclogenesis at antigenic level was also evaluated. The results indicate that T. cruzi adapts to various environmental conditions and also that the ability of epimastigotes to undergo metacyclogenesis are influenced by the maintenance schedule. Antigenic profile analysis supports the idea that epimastigotes adapted to culture media do not complete their molecular differentiation into the trypomastigote metacyclic stage. These transition forms conserve some degree of gene expression of the epimastigote stage.  相似文献   

2.
Trypanosoma cruzi is under the attack of reactive species produced by its mammalian and insect hosts. To survive, it must repair its damaged DNA. We have shown that a base excision DNA repair (BER)-specific parasite TcAP1 endonuclease is involved in the resistance to H2O2. However, a putative TcAP1 negative dominant form impairing TcAP1 activity in vitro did not show any in vivo effect. Here, we show that a negative dominant form of the human APE1 apurinic/apyrimidinic (AP) endonuclease (hAPE1DN) induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to H2O2. Those results confirm that TcAP1 AP endonuclease activity plays an important role in epimastigote and in infective metacyclic trypomastigote oxidative DNA damage resistance leading to parasite persistence in the insect and mammalian hosts. All along its biological cycle and in its different cellular forms, T. cruzi, the etiological parasite agent of Chagas’ disease, is under the attack of reactive species produced by its mammalian and insect hosts. To survive, T. cruzi must repair their oxidative damaged DNA. We have previously shown that a specific parasite TcAP1 AP endonuclease of the BER is involved in the T. cruzi resistance to oxidative DNA damage. We have also demonstrated that epimastigotes and cell-derived trypomastigotes parasite forms expressing a putative TcAP1 negative dominant form (that impairs the TcAP1 activity in vitro), did not show any in vivo effect in parasite viability when exposed to oxidative stress. In this work, we show the expression of a negative dominant form of the human APE1 AP endonuclease fused to a green fluorescent protein (GFP; hAPE1DN-GFP) in T. cruzi epimastigotes. The fusion protein is found both in the nucleus and cytoplasm of noninfective epimastigotes but only in the nucleus in metacyclic and cell-derived trypomastigote infective forms. Contrarily to the TcAP1 negative dominant form, the ectopic expression of hAPE1DN-GFP induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to increasing H2O2 concentrations. No such effect was evident in expressing hAPE1DN-GFP cell-derived trypomastigotes. Although the viability of both wild-type infective trypomastigote forms diminishes when parasites are submitted to acute oxidative stress, the metacyclic forms are more resistant to H2O2 exposure than cell-derived trypomastigotes.Those results confirm that the BER pathway and particularly the AP endonuclease activity play an important role in epimastigote and metacyclic trypomastigote oxidative DNA damage resistance leading to parasite survival and persistence inside the mammalian and insect host cells.  相似文献   

3.
In contrast to animal cells, the inositol 1,4,5-trisphosphate receptor of Trypanosoma cruzi (TcIP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. Here, we present evidence that TcIP3R is a Ca2+ release channel gated by IP3 when expressed in DT40 cells knockout for all vertebrate IP3 receptors, and is required for Ca2+ uptake by T. cruzi mitochondria, regulating pyruvate dehydrogenase dephosphorylation and mitochondrial O2 consumption, and preventing autophagy. Localization studies revealed its co-localization with an acidocalcisome marker in all life cycle stages of the parasite. Ablation of TcIP3R by CRISPR/Cas9 genome editing caused: a) a reduction in O2 consumption rate and citrate synthase activity; b) decreased mitochondrial Ca2+ transport without affecting the membrane potential; c) increased ammonia production and AMP/ATP ratio; d) stimulation of autophagosome formation, and e) marked defects in growth of culture forms (epimastigotes) and invasion of host cells by infective stages (trypomastigotes). Moreover, TcIP3R overexpressing parasites showed decreased metacyclogenesis, trypomastigote host cell invasion and intracellular amastigote replication. In conclusion, the results suggest a modulatory activity of TcIP3R-mediated acidocalcisome Ca2+ release on cell bioenergetics in T. cruzi.  相似文献   

4.
Extracellular ATP elicits transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts through interaction with more than one subtype of cell surface P2-purinoceptor. Elevation of [Ca2+]i arises, at least in part, by release of Ca2+ from intracellular stores. In the present study, we investigated the possible roles of protein kinase C (PKC) in regulating these signaling pathways. [Ca2+]i of indo-1-loaded UMR-106 osteoblastic cells was monitored by spectrofluorimetry. In the absence of extracellular Ca2+, ATP (100 μM) induced transient elevation of [Ca2+]i to a peak 57 ± 7 nM above basal levels (31 ± 2 nM, means ± S. E. M., n = 25). Exposure of cells to the PKC activator 12-O-tetradecanoyl-β-phorbol 13-acetate (TPA, 100 nM) for 2 min significantly reduced the amplitude of the ATP response to 13 ± 4 nM (n = 11), without altering basal [Ca2+]i. Inhibition was half-maximal at approximately 1 nM TPA. The Ca2+ response to ATP was also inhibited by the PKC activators 1,2-dioctanoyl-sn-glycerol or 4β-phorbol 12, 13-dibutyrate, but not by the control compounds 4α-phorbol or 4α-phorbol 12, 13-didecanoate. Furthermore, exposure of cells to the protein kinase inhibitors H-7 or staurosporine for 10 min significantly attenuated the inhibitory effect of TPA. However, these protein kinase inhibitors did not prolong the [Ca2+]i response to ATP alone, indicating that activation of PKC does not account for the transient nature of this response. When the effects of other nucleotides were examined, TPA was found to cause significantly greater inhibition of the response to the P2Y-receptor agonists, ADP and 2-methylthioATP, than the response to the P2U-receptor agonist, UTP. These data indicate that activation of PKC selectively inhibits the P2Y signaling pathway in osteoblastic cells. In vivo, endocrine or paracrine factors, acting through PKC, may regulate the responsiveness of osteoblasts to extracellular nucleotides. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Abstract: The toxicity of thapsigargin, a selective inhibitor of endoplasmic reticular Ca2+-ATPase, was investigated in GT1-7 cells, a murine hypothalamic cell line. Treatment of these cells with 50 or 100 nM thapsigargin greatly reduced cell viability at 24 and 48 h. These doses of thapsigargin induced a rapid rise in free cytosolic Ca2+ ([Ca2+]i), followed by a sustained increase. Addition of EGTA to chelate extracellular Ca2+ diminished somewhat the size of the initial increase of [Ca2+]i caused by thapsigargin, and abolished the sustained increase. The sustained increase could also be abolished by addition of La3+ and by SKF 96365, a drug selective for receptor-mediated calcium entry, but not by verapamil or flunarizine. Pretreatment with 50 µM BAPTA/AM, a cytosolic Ca2+ chelator, inhibited the peak [Ca2+]i caused by thapsigargin but did not inhibit the sustained elevation of [Ca2+]i. Neither EGTA nor BAPTA/AM inhibited the cell death induced by thapsigargin. The cell death was characterized by DNA fragmentation (“laddering”), nuclear condensation and fragmentation, and was inhibited by protein synthesis inhibitor cycloheximide, all characteristic of apoptotic cell death. Overexpression of the proto-oncogene bcl-2 in GT1-7 cells inhibited significantly DNA fragmentation, nuclear condensation and fragmentation, and cell death induced by thapsigargin. However, Bcl-2 did not alter either basal [Ca2+]i or the elevation of [Ca2+]i induced by thapsigargin. Our results suggest that abnormal Ca2+ release from endoplasmic reticulum caused by thapsigargin induces GT1-7 death by apoptosis and that this effect does not depend on Ca2+ influx from the extracellular space. Bcl-2 inhibited apoptosis induced by thapsigargin, but the mechanism is unlikely to be inhibition of endoplasmic reticular Ca2+ release in GT1-7 neuronal cells.  相似文献   

6.
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.  相似文献   

7.
Epimastigotes of Trypanosoma cruzi, Peru strain, incubated in Contreras' artificial triatomine urine transformed into metacyclic trypomastigotes when 10 mM L-glutamine, L-asparagine or D-fructose was added to the medium. Metacyclogenesis with these substrates was comparable to the percent metacyclic morphotype formation induced by L-proline and significantly greater than that stimulated by 10 mM D-glucose. Sodium acetate (10 mM) increased transformation induced by L-proline, and L-hydroxyproline (10 mM) increased transformation induced by D-fructose. Phosphoenolpyruvate (10 mM) inhibited L-proline-induced metacyclic trypomastigote stage formation. Three antimetabolites, azetidine 2-carboxylate (5 mM), malonic acid (1 mM), and desthiobiotin (5 mM), completely inhibited D-fructose-induced but not L-proline-induced transformation. The Costa Rica, Y, and CL strains of T. cruzi showed different patterns of percent metacyclogenesis with substrates that induce transformation in the Peru strain.  相似文献   

8.
Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca2+ containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 μg/ml) induced plasma membrane permeabilization followed by Ca2+ influx and mitochondrial Ca2+ accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (ΔΨm) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca2+ treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased ΔΨm by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.  相似文献   

9.
The purpose of this study was to evaluate the mechanism by which Escherichia coli lipopolysaccharide stimulates the secretion of phosphatidylcholine in primary cultures of rat type II pneumocytes. The stimulatory effect of lipopolysaccharide on phosphatidylcholine secretion was additive to those of terbutaline and TPA (protein kinase A and C activators respectively) and this effect was not suppressed by inhibitors of both protein kinases. On the other hand, lipopolysaccharide did not modify the increase on phosphatidylcholine secretion induced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, and enhanced slightly the calcium-ionophore A23187 stimulated phosphatidylcholine secretion. In addition, the stimulatory effect of lipopolysaccharide was suppressed by BAPTA, an intracellular Ca2+ chelator, and KN-62, a specific inhibitor of Ca2+-calmodulin-dependent protein kinase. These results, together with the lipopolysaccharide-mediated increase in the cytosolic [Ca2+], suggest that stimulation of phosphatidylcholine secretion by lipopolysaccharide in type II pneumocytes occurs by a calcium-dependent transduction mechanism via Ca2+-calmodulin-dependent protein kinase activation.  相似文献   

10.
In vitro studies on the fatty acid metabolism of the epimastigotes and trypomastigotes of Trypanosoma cruzi showed the following: (1) Trypomastigotes demonstrated the ability to convert labeled palmitic acid to CO2. Epimastigotes either did not convert this fatty acid to CO2 or did so at a very low rate. (2) Trypomastigotes incorporated palmitic acid into neutral lipids, but, at a rate less than that of the epimastigotes. (3) While epimastigotes readily incorporated palmitic acid into phospholipid lipids, trypomastigote forms seemed to lack this ability.  相似文献   

11.

Background

The palmitate analogue 2-bromopalmitate (2-BP) is a non-selective membrane tethered cysteine alkylator of many membrane-associated enzymes that in the last years emerged as a general inhibitor of protein S-palmitoylation. Palmitoylation is a post-translational protein modification that adds palmitic acid to a cysteine residue through a thioester linkage, promoting membrane localization, protein stability, regulation of enzymatic activity, and the epigenetic regulation of gene expression. Little is known on such important process in the pathogenic protozoan Trypanosoma cruzi, the etiological agent of Chagas disease.

Results

The effect of 2-BP was analyzed on different developmental forms of Trypanosoma cruzi. The IC50/48 h value for culture epimastigotes was estimated as 130 μM. The IC50/24 h value for metacyclic trypomastigotes was 216 nM, while for intracellular amastigotes it was 242 μM and for cell derived trypomasigotes was 262 μM (IC50/24 h). Our data showed that 2-BP altered T. cruzi: 1) morphology, as assessed by bright field, scanning and transmission electron microscopy; 2) mitochondrial membrane potential, as shown by flow cytometry after incubation with rhodamine-123; 3) endocytosis, as seen after incubation with transferrin or albumin and analysis by flow cytometry/fluorescence microscopy; 4) in vitro metacyclogenesis; and 5) infectivity, as shown by host cell infection assays. On the other hand, lipid stress by incubation with palmitate did not alter epimastigote growth, metacyclic trypomastigotes viability or trypomastigote infectivity.

Conclusion

Our results indicate that 2-BP inhibits key cellular processes of T. cruzi that may be regulated by palmitoylation of vital proteins and suggest a metacyclic trypomastigote unique target dependency during the parasite development.
  相似文献   

12.
The interplay between Ca2+ efflux mechanisms of the plasma membrane (PM) and transient changes of the cytosolic concentration of ionized calcium ([Ca2+]i) was studied in suspensions of human neutrophils loaded with the [Ca2+]i indicator, Fura-2. To reveal Ca2+ efflux through PM the interference of intracellular Ca stores was prevented by preincubating the cells in the presence of EGTA, thapsigargin, and ionomycin. Addition of econazole prevented varying entry of divalent cations regulated by the filling state of Ca stores. The preincubation seemed to empty and permeabilize virtually all Ca stores, ensuring that the monitored changes of [Ca2+]i were caused exclusively by PM Ca2+ transporters. Following preincubation, the addition of CaCl2 induced, mediated by ionomycin, a transient rise of [Ca2+]i, a spike, eventually decreasing to an intermediary [Ca2+]i level. The ATP-dependent decrease of [Ca2+]i terminating the spike was abolished by the calmodulin antagonist, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7), but not by the protein kinase C inhibitor, staurosporine, nor by Na+-free medium, suggesting that neither activity of protein kinase C nor exchange was necessary for generation of the Ca2+ spike. In conclusion, the PM Ca2+ pump was responsible for the Ca2+ spike by responding to the rapid rise of [Ca2+]i by a delayed activation, possibly involving calmodulin. This characteristic feature of the PM pump may be important for the generation of cellular [Ca2+]i spikes in general.  相似文献   

13.
The effect of the natural product diindolylmethane on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 20–50 µM induced [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Diindolylmethane-evoked Ca2+ entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 50–100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca2+]i rise in PC3 cells by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels. Diindolylmethane caused cell death in which apoptosis may participate.  相似文献   

14.
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca2+ and mitochondrial dysfunction due to matrix Ca2+ overload. In order to investigate the mechanism of Ca2+‐induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (?Ψm) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca2+ was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca2+ this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ?Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca2+ dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA‐insensitive MPT in T. cruzi mitochondria.  相似文献   

15.
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.  相似文献   

16.
17.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

18.
Abstract: The effects of prostaglandin E2 (PGE2) on 86Rb efflux from rat brain synaptosomes were studied to explore its role in nerve ending potassium (K+) channel modulation. A selective dose-dependent inhibition of the calcium-activated charybdotoxin-sensitive component of efflux was found upon application of PGE2. No significant effect was seen on basal and voltage-dependent components over the concentration range of 10–8 to 10–5M. The protein kinase C (PKC) inhibitors H-7 (10 μM) and staurosporine (100 nM), as well as prolonged preincubation (90 min) with 40-phorbol 12, 13-dibutyrate, which has been reported to down-regulate PKC, abolished the PGE2-in- duced inhibition, whereas HA1004 (10 μM) and Rp-3′,5’cyclic phosphorothioate (100 nM), which are relatively more selective for protein kinase A than PKC, did not. 4β-Phorbol 12, 13-dibutyrate (100 nM), an activator of PKC, produced a similar inhibition of the Ca2+-dependent component of 86Rb efflux but also had no effect on the basal and voltage-dependent components. These data suggest that PGE2 can inhibit rat brain nerve ending calcium-activated 86Rb efflux, and this inhibition may involve PKC activation.  相似文献   

19.
 The transformation of Trypanosoma cruzi epimastigotes to mammal-infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions (TAU 3AAG medium). During this process, changes in the nature of cell surface sugar composition and sugar distribution was evaluated using FITC and gold-labeled lectins and observed by flow cytometry and transmission electron microscopy. The pattern of labeling with the lectins from Triticum vulgaris (WGA), Arachis hypogaea (PNA), Limax flavus (LFA), Canavalia ensiformis (Con-A), and Ricinus communis (RCA-I) significantly changed during the metacyclogenic process. The results obtained are discussed in relation to the role played by T. cruzi cell surface carbohydrate residues on the process of parasite–host cell interaction. Accepted: 26 May 1998  相似文献   

20.
Liang WZ  Lu CH 《Life sciences》2012,90(17-18):703-711
AimsThis study examined whether the essential oil component carvacrol altered cytosolic free Ca2+ level ([Ca2+]i) and viability in human glioblastoma cells.Main methodsThe Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Cell viability was measured by detecting reagent WST-1. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry.Key findingsCarvacrol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Carvacrol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&;F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished carvacrol-induced [Ca2+]i rise. Incubation with carvacrol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished carvacrol-induced [Ca2+]i rise. At concentrations of 200–800 μM, carvacrol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N–-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that carvacrol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. At concentrations of 200, 400 and 600 μM, carvacrol induced production of ROS.SignificanceIn human glioblastoma cells, carvacrol induced a [Ca2+]i rise by inducing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via protein kinase C-sensitive, non store-operated Ca2+ channels. Carvacrol induced cell death that might involve ROS-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号