首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In this study we examine the cytoplasmic inheritance patterns of an interspecific hybridizing population of Fremont and narrowleaf cottonwoods, using mitochondrial DNA. Three mitochondrial probes showing polymorphisms were used to distinguish between trees of known nuclear inheritance. Every tree screened had only one cytoplasmic genotype, either Fremont or narrowleaf. Thus, these results demonstrate that mitochondria are uniparentally inherited in these trees. Previous studies of the nuclear inheritance of this interspecific hybridizing population of cottonwood trees indicated an asymmetry in the frequency of parental genes. Using mitochondrial markers we tested one hypothesis potentially responsible for this asymmetric distribution (i.e., trees of mixed genotypes will be sterile or will not survive if their cytoplasm is derived from one or the other parent). Our results, however, show that both Fremont and narrowleaf mitochondrial markers are found in trees with mixed nuclear genotypes. Thus, nuclear-cytoplasmic incompatibilities do not appear to account for the asymmetric distribution of nuclear genotypes within the hybrid swarm. An alternative explanation for the observed asymmetric distribution of nuclear genotypes is advanced. Although nuclear-cytoplasmic incompatibilities do not appear to explain the asymmetric distribution of nuclear alleles within the hybrid zone, nonrandom associations between nuclear and cytoplasmic genotypes do exist. For example, all F1 hybrids had Fremont mitochondrial genotypes. Furthermore, backcrosses between F1 hybrid and narrowleaf trees have a higher than expected proportion of heterozygous loci and a higher than expected proportion of Fremont mitochondria. We propose that seeds, seedlings, or trees with high proportions of heterozygous loci are at a disadvantage unless they also have the Fremont mitochondrial genotype. While it is generally difficult to infer dynamic processes from static patterns, studies such as ours enable one to gain new insights to the dynamics of plant hybrid zones. A hybridization pattern of decreasingly complex backcrosses as one proceeds from higher to lower elevation within the hybrid swarm, a residue of Fremont cytoplasmic DNA within the pure narrowleaf population, and the unidirectional nature of these crosses suggest that the narrowleaf population may be spreading down the canyon and the Fremont population receding. The eventual fate of the hybrid zone, in relation to these processes, is discussed.  相似文献   

2.
Premating isolation between incipient species is rarely studied in nature, even though mating tests in captivity may give an inaccurate picture of natural hybridization. We studied premating barriers between the warningly colored butterflies Heliconius erato and H. himera (Lepidoptera) in a narrow contact zone in Ecuador, where hybrids are found at low frequency. Eggs obtained from wild-mated females, supplemented with eggs and young larvae collected from the wild, were reared to adulthood. Adult color patterns of these progeny were then used to infer how their parents must have mated. Likelihood was used to estimate both the frequencies of potential parental genotypes from adult phenotypes collected in the wild, and the degree of assortative mating from the inferred parents. The frequencies of parental genotypes varied across the hybrid zone, but our statistical method allowed estimates of hybrid deficit and assortative mating to be integrated across all sites sampled. The best estimate of the frequency of F1 and backcross hybrid adults in the center of the hybrid zone was 10%, with support limits (7.1%, 13.0%; support limits are asymptotically equivalent to 95% confidence limits). Mating was highly assortative: in the center of the hybrid zone the cross-mating probability between H. erato and H. himera was only 5% (0.3%, 21.4%). Wild hybrids themselves mated with both pure forms, and the probabilities that they mated in any direction were not significantly lower than those among conspecifics. These results are consistent with earlier laboratory studies on mate choice, and suggest that selection against hybrids must be strong to prevent formation of a hybrid swarm. Unfortunately, the wide support limits on mating behavior precluded a measure of the strength of selection from these data alone. Our statistical approach provides a useful general method for estimating mate choice in the wild.  相似文献   

3.
We studied 75 individuals of the Plains pocket gopher, Geomys bursarius, from eastern New Mexico, where the subspecies major and knoxjonesi hybridize. Each individual was examined for chromosome number, ribosomal DNA, mitochondrial DNA, and three protein systems for which reference parental populations were fixed for alternative alleles. Twenty individuals were indistinguishable from parental major, 14 individuals were indistinguishable from parental knoxjonesi, and 41 individuals had genotypes composed of combinations of character states that distinguish the two parental types. The parental types appear to represent discrete genetic entities that have restricted introgression across a narrow hybrid zone (width approximately 3 km, using the 20/80 criterion). Parental types overlap in geographic distribution near the center of the zone, and changes in mitochondrial DNA and the five nuclear markers are concordant across the zone. It is probable that there is premating isolation between knoxjonesi males and major females. The frequencies of individuals with certain genotypic combinations within our sample imply differential reproductive success of certain genotypes. We propose that F1's and highly heterozygous males are sterile and that hybrid females are less fertile than parental females. These postmating factors, along with premating isolation for one of the reciprocal crosses, probably account for the restriction of gene flow across the contact zone. The structure of the zone can be explained by the “dynamic equilibrium” model.  相似文献   

4.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

5.
Within a broad (>200 km wide) hybrid zone involving three parapatric species of Aesculus, we observed coincident clines in allele frequency for 6 of 14 electrophoretic loci. The cooccurrence of alleles characteristic of A. pavia, A. sylvatica, and A. flava was used to estimate genetic admixtures in 48 populations involving various hybrids between these taxa in the southeastern United States. High levels of allelic polymorphism (up to 40% greater than the parental taxa) were observed in hybrid populations and also in some populations bordering the hybrid zone. A detailed analysis of a portion of the hybrid zone involving A. pavia and A. sylvatica revealed a highly asymmetrical pattern of gene flow, predominantly from Coastal Plain populations of A. pavia into Piedmont populations of A. sylvatica. Computer simulations were used to generate expected genotypic arrays for parental, F1; and backcross individuals, which were compared with natural populations using a character index scoring system. In these comparisons, hybrid individuals could be distinguished from either parent, but F1 and backcross progeny could not be distinguished from each other. Most hybrid populations were found to include hybrids and one of the parental taxa, but never both parents. Three populations appeared to be predominantly hybrids with no identifiable parental individuals. Hybrids occurred commonly at least 150 km beyond the range of A. pavia, but usually not more than 25 km beyond the range of A. sylvatica. Introgression, suggested by genetically hybrid individuals and significant gene admixtures of two or more species in populations lacking morphological evidence of hybridization, may extend the hybrid zone further in both directions. The absence of one or both parental species from hybrid populations implies a selective disadvantage to parentals in the hybrid zone and/or that hybridization has occurred through long-distance gene flow via pollen, primarily from A. pavia into A. sylvatica. Long-distance pollen movement in plants may generate hybrid zones of qualitatively different structure than those observed in animals, where gene flow involves dispersal of individuals.  相似文献   

6.
Introgressive hybridization between mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) was studied using sequence analysis of the paternally inherited, Y-linked, Zfy gene. The distribution of Zfy genotypes indicate that male white-tailed deer disperse into the range of mule deer and successfully breed with mule deer does. In western Texas, F1 hybrids are rare, but a relatively high proportion of backcross individuals was observed. Phylogenetic analysis of Zfy among white-tailed, mule, and black-tailed deer was consistent with traditional systematic placement of the latter two being sister-taxa, whereas previous mtDNA studies suggested mule and white-tailed deer were sister taxa.  相似文献   

7.
We recently described a new source of host-plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata (Say), in a tetraploid potato (Solanum tuberosum L.) selection, ND2858-1. This genotype, and selected backcross progeny, had little damage while check cultivars were defoliated in open-choice field assays. To further characterize the observed deterrence, we determined foliar glycoalkaloids and conducted no-choice assays with ND2858-1 backcross progeny genotypes (ND4382-n). Development of neonate L. decemlineata in detached leaf assays on resistant progeny genotypes was delayed and larval weight gain after 4 d was inhibited by 75% relative to larval development and weight gain on susceptible genotypes. Inhibition of larval development in detached leaf assays with the selected progeny genotypes was equivalent to that of high-leptine genotypes of S. chacoense Bitter. Foliar glycoalkaloids of resistant genotypes included low levels of leptines I and II. The unlikely nature of this cross and the presence of leptine in this and resistant progeny selections cast doubt on the recorded pedigree. Molecular analyses were conducted by restriction fragment-length polymorphism and amplified fragment-length polymorphisms. Both methods established a high degree of relatedness to S. tuberososum and S. chacoense but not to S. fendleri. We conclude that ND2858-1 did not originate from a cross with S. fendleri, but is likely derived from S. chacoense. Oviposition and larval survival were reduced when adult L. decemlineata were placed in cages with resistant genotypes; an effect that was enhanced by inclusion of Perillus bioculatus F. Therefore, the nonpreference previously observed in open-choice field defoliation assays is also associated with antibiotic effects on L. decemlineata. The resistance may be caused by leptines, but is greater than would be expected by the leptine content. This source of host plant resistance could be a cost-effective management strategy, especially if combined with other resistance mechanisms or compatible control measures to delay development of resistance in the target insects.  相似文献   

8.
Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year’s experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community. Received: 7 April 1999 / Accepted: 2 November 1999  相似文献   

9.
Sorghum midge, Contarinia sorghicola Coq. (Diptera: Cecidomyiidae) is an important pest of grain sorghum, and host-plant resistance is one of the most effective means of controlling this pest. We studied the antibiosis mechanism of resistance in sorghum to C. sorghicola in a diverse array of midge-resistant and midge-susceptible genotypes. Data were recorded on adult emergence, postembryonic developmental period, number of mature eggs in the ovary, fecundity, larval survival from artificially implanted eggs; and the tannins, soluble sugars, and protein content of 10-day old and mature grains during the 1982-91 rainy and post-rainy seasons. Adult emergence was significantly lower in the midge-resistant genotypes compared with the susceptible controls. Initiation of adult emergence was delayed by 4–8 days on DJ 6514, IS 8571, IS 9807, IS 10712, IS 19474, IS 19512, ICSV 830 and ICSV 197. Postembryonic developmental period was prolonged on DJ 6514, IS 15107, IS 3461, IS 7005, IS 19474, ICSV 831 and ICSV 197. However, the delay in adult emergence or the extended developmental period was not observed during the post-rainy season in some genotypes. These differences in the expression of antibiosis to midge in resistant genotypes over seasons may be attributed to the effect of environmental conditions on the insect development and chemical composition of sorghum grain. Amounts of tannins and proteins were generally greater in the midge-resistant lines compared with the susceptible ones (except tannins in DJ 6514) while the soluble sugars were low in the midge-resistant lines (except TAM 2566). These differences in chemical composition of the grain between genotypes and variations over seasons have been discussed in relation to the expression of antibiosis mechanism of resistance to the sorghum midge. Antibiosis to sorghum midge was also evident in terms of smaller size of larvae, lower number of eggs in the ovary, reduced fecundity, and larval survival. Midge-resistant lines have diverse effects on the biology of this insect. Antibiosis along with other components of resistance can be used to develop cultivars with stable resistance to C. sorghicola.  相似文献   

10.
Understanding the genetic basis to landscape vegetation structure is an important step that will allow us to examine ecological and evolutionary processes at multiple spatial scales. Here for the first time we show that the fractal architecture of a dominant plant on the landscape exhibits high broad-sense heritability and thus has a genetic basis. The fractal architecture of trees is known to influence ecological communities associated with them. In a unidirectional cottonwood-hybridizing complex (Populus angustifolia x P. fremontii) pure and hybrid cottonwoods differed significantly in their fractal architecture, with phenotypic variance among backcross hybrids exceeding that of F1 hybrids and of pure narrowleaf cottonwoods by two-fold. This result provides a crucial link between genes and fractal scaling theory, and places the study of landscape ecology within an evolutionary framework.  相似文献   

11.
 Ten yeast artificial chromosomes (YACs) spanning the Gm2 locus have been isolated by screening high-density filters containing a total of approximately 7000 YAC (representing six genome equivalents) clones derived from a japonica rice, Nipponbare. The screening was done with five RFLP markers flanking a gall midge resistance gene, Gm2, which was previously mapped onto chromosome 4 of rice. This gene confers resistance to biotype 1 and 2 of gall midge (Orseolia oryzae), a major insect pest of rice in South and Southeast Asia. The RFLP markers RG214, RG329 and F8 hybridized with YAC Y2165. Two overlapping YAC clones (Y5212 and Y2165) were identified by Southern hybridization, with Gm2-flanking RFLP markers, and their inserts isolated. The purified YACs and RFLP markers flanking Gm2 were labeled and physically mapped by the fluorescence in situ hybridization (FISH) technique. All of them mapped to the long arm of chromosome 4 of the resistant variety of rice, ‘Phalguna’, confirming the previous RFLP mapping data. Received: 15 December 1997 / Accepted: 5 March 1998  相似文献   

12.
Understanding the factors influencing host-selection behavior of parasitoids is essential in studies on host-parasitoid ecology and evolution, and in combining sustainable strategies of pest management, such as host-plant resistance and biological control. The effects of host-plant resistance on the olfactory response and parasitism success by Cotesia vestalis, a parasitoid of diamondback moth (Plutella xylostella) larvae were examined. Here, it was demonstrated that host-plant resistance can strongly influence foraging behavior and parasitism success of the parasitoid. In olfactometer experiments, C. vestalis did not differentiate between crucifer plant types with similar levels of susceptibility or resistance to P. xylostella but showed a strong preference for susceptible compared with partially-resistant host plants. The influence of previous oviposition activity varied with the host-plant type experienced by the parasitoid. In cage experiments, C. vestalis preferred to parasitize P. xylostella larvae on a susceptible plant compared with larvae on a partially resistant host plant when exposed to hosts for 24 h. However, this preference appeared to be transitory, and was not found after 96 h exposure. The present study suggests that combining partial host-plant resistance with biological control by C. vestalis for the control of P. xylostella may in some circumstances be antagonistic and negatively affect parasitism success.  相似文献   

13.
Myths, models and mitigation of resistance to pesticides   总被引:3,自引:0,他引:3  
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about ''resistance management'' has been based on ''myths''. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. ''Resistance management'' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a ''solution'' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced.  相似文献   

14.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   

15.
We studied the inheritance of survival ability in host-associated populations of the tephritid fly, Eurosta solidaginis, to test predictions of sympatric speciation models. Eurosta solidaginis induces galls on two species of goldenrod, Solidago altissima and S. gigantea. The host-associated populations have been hypothesized to be host races that originated in sympatry (Craig et al. 1993). We found evidence for disruptive selection for host use, which is a critical assumption of sympatric speciation models. Each host race had higher survival rates on their host plant than on the alternative host. F1 and backcross hybrids also had lower survival rates than the pure host-race flies on their host plant. Since assortative mating occurs due to host-plant preference (Craig et al. 1993) this would select for divergence in host preference. Low hybrid survival could have been due to strong genetic incompatibilities of the populations or due to host adaptation by each population. Strong genetic incompatibilities would result in poor survival on all host plants, while host adaptation could result in low overall survival with high hybrid survival on some host plants with particularly “benign” environments. High survival of F1, F2, and backcross hybrids on some plant genotypes in some years supported the host adaptation hypothesis. F1 flies mated and oviposited normally and produced viable F2 and backcross hybrids indicating gene flow is possible between the host races. A few flies developed and emerged on the alternative host plant. This demonstrates that genes necessary to utilize the alternative host exist in both host races. This could have facilitated the origin of one of the populations via a host shift from the ancestral host. The inheritance of survival ability appears to be an autosomal trait. We did not find evidence that survival ability was maternally influenced or sex linked.  相似文献   

16.
Rubus pileatus and its F1 hybrids with raspberry (R. idaeus) were resistant to cane blight (Leptosphaeriu conioth-yriurn), but little resistance was obtained in subsequent backcross generations apart from a hybrid identified in the second backcross. Two hybrids from backcrossing R. coreanus to raspberry also showed resistance. R. pileatus and its F, hybrids produced hard growth, unlike that of raspberries, which may have been associated with a form of resistance that could not easily be transferred to commercial raspberry cultivars. Some of the genotypes used as parents showed intermediate levels of resistance and it is possible that the highly resistant genotype identified in the second backcross arose from a recombination of genes for resistance. Plants with pubescent canes (gene H) were up to 20% more resistant to mycelial inoculation than those with non-pubescent canes (gene h), and the percentage of machine-harvester inflicted wounds with disease symptoms that resulted from natural infection was also less in genotypes with pubescent canes. Many genotypes with intermediate levels of resistance suffered only limited damage from mycelial inoculation and so there are good prospects for breeding cultivars with an effective resistance, despite the limited value of R. pileatus as a donor species.  相似文献   

17.
An experiment that involved 79 named cultivars and advanced selections of Fragaria × ananassa L., 46 Fragaria virginiana Duch. clones, and 12 F. virginiana backcross selections, and eight Fragaria virginiana × Fragaria chiloensis (L.) Duch. (all Rosaceae) selections, was conducted to detect variation in strawberry genotypes for resistance to tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae). The F. virginiana genotypes were shown to be more resistant than the cultivars and advanced selections in both 2001 and 2002. Within the group of cultivars and advanced selections, several June‐bearing and dayneutral genotypes were more resistant than others. There were fewer plant bugs on F. virginiana than on the cultivars and hybrids. Insect numbers were consistently correlated with percentage of damaged fruits and damage severity, but total numbers of flowers and fruits were only correlated with insect numbers, percentage fruit damage, and damage severity in 1 of the 2 years. Our results suggest that strawberry cultivars, highly resistant to tarnished plant bug, can be bred, if the trait is introgressed from F. virginiana selections.  相似文献   

18.
We report the tagging of a powdery mildew [Leveillula taurica (Lév.) Arnaud.] resistance gene (Lv) in tomato using RAPD and RFLP markers. DNA from a resistant (cv Laurica) and a susceptible cultivar were screened with 300 random primers that were used to amplify DNA of resistant and susceptible plants. Four primers yielded fragments that were unique to the resistant line and linked to the resistance gene in an F2 population. One of these amplified fragments, OP248, with a molecular weight of 0.7 kb, was subsequently mapped to chromosome 12, 1 cM away from CT134. Using RFLP markers located on chromosome 12, it was shown that approximately one half of chromosome 12 (about 42 cM), in the resistant variety is comprised of foreign DNA, presumably introgressed with the resistance gene from the wild species L. chilense. Further analysis of a backcross population revealed that the Lv gene lies in the 5.5-cM interval between RFLP markers, CT211 and CT219. As a prelude to map-based cloning of the Lv gene, we are currently enriching the density of markers in this region by a combination of RAPD primers and other techniques.  相似文献   

19.
To confirm whether allopolyploidy occurs in samples of previously identified Porphyra yezoensis Ueda, P. tenera Kjellm., and P. yezoensis × P. tenera from natural and cultivated populations, we examined these samples by using PCR‐RFLP and microsatellite analyses of multiple nuclear and chloroplast regions [nuclear regions: type II DNA topoisomerase gene (TOP2), actin‐related protein 4 gene (ARP4), internal transcribed spacer (ITS) rDNA and three microsatellite loci; chloroplast region: RUBISCO spacer]. Except for the ITS region, these multiple nuclear markers indicated that the wild strain MT‐1 and the cultivated strain 90‐02 (previously identified as P. yezoensis × P. tenera and cultivated P. tenera, respectively) are heterozygous and possess both genotypes of P. tenera and P. yezoensis in the conchocelis phase. Furthermore, gametophytic blades of two pure lines, HG‐TY1 and HG‐TY2 (F1 strains of MT‐1 and 90‐02, respectively), were also heterozygous, and six chromosomes per single cell could be observed in each blade of the two pure lines. These results demonstrate that allopolyploidy occurs in Porphyra strains derived from both natural and cultivated populations, even though ITS genotypes of these strains showed homogenization toward one parental ITS.  相似文献   

20.
American [Castanea dentata (Marsh) Borkh.] × Chinese [Castanea mollissima Blume] chestnut (Fagac, ae) hybrids are a novel system in which to study influences of phytopathogenic fungi and woody plant hybridization on herbivore susceptibility, as the hybrids are well characterized with regard to resistance to the chestnut blight fungus [Cryphonectria parasita (Murr) Barr (Endothia) Diaporthales: Valsaceae] and variability is present. We chose two groups of resistance‐rated backcross chestnut that shared an F1 parent and had different American parents. Foliage from both backcross groups and the parent trees was sampled on three dates for use in feeding assays with gypsy moth larvae [Lymantria dispar (L.) [Lepidoptera: Lymantriidae], adult Japanese beetles [Popillia japonica Newman (Coleoptera: Scarabaeidae)], and fall webworm larvae [Hyphantria cunea Drury (Lepidoptera: Arctiidae)], respectively. Foliar analyses were performed concurrently and included carbohydrate, tannin, and nitrogen content, toughness, and density. Blight resistance had almost no effect on herbivore performance or foliar chemistry. When the parent trees and backcross groups were compared, however, significant differences in gypsy moth performance and Japanese beetle consumption were evident. There were no differences in fall webworm consumption. Most foliar characteristics measured differed among chestnut genotypes at some point in the season, and all varied seasonally. No clear pattern emerges with respect to the relationship among blight resistance, herbivore susceptibility, foliar properties, and plant genotype, and more research is needed to separate these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号